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Abstract. Sentiment classification for short texts faces significant chal-
lenges such as class imbalance, limited training samples, and the inherent
subjectivity of sentiment labels — issues that are further intensified by
the limited context in short texts. These factors make it difficult to re-
solve ambiguity and exacerbate data sparsity, hindering effective learn-
ing. In this paper, we evaluate the effectiveness of small Transformer-
based models (i.e., BERT and RoBERTa, with fewer than 1 billion pa-
rameters) for multi-label sentiment classification, with a particular focus
on short-text settings. Specifically, we evaluated three key factors influ-
encing model performance: (1) continued domain-specific pre-training,
(2) data augmentation using automatically generated examples, specif-
ically generative data augmentation, and (3) architectural variations of
the classification head. Our experimental results show that data augmen-
tation improves classification performance, while continued pre-training
on augmented datasets can introduce noise rather than boost accuracy.
Furthermore, we confirm that modifications to the classification head
yield only marginal benefits. These findings provide practical guidance
for optimizing BERT-based models in resource-constrained settings and
refining strategies for sentiment classification in short-text datasets.

Keywords: sentiment analysis - short-text datasets - small language
models.

1 Introduction

In modern practical decision-making, building predictive models often involves
significant challenges, including imbalanced class distributions, highly variable
dataset sizes — from limited to extremely large — and inherent subjectivity in
the ground truth labels. These factors can severely degrade model performance
and further complicate learning. Consequently, developing novel learning meth-
ods capable of addressing these difficulties is a critical area of ongoing research.
Within this context, multi-label sentiment classification in short texts represents
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a particularly challenging task, requiring models to infer subjective emotional
states (e.g., anger, joy, or surprise) from sparse and ambiguous linguistic cues.
Short texts inherently limit contextual information, reducing the availability of
disambiguating semantic cues and amplifying the effects of data sparsity. An
additional common issue in this task includes the inherently subjective nature
of sentiment annotations, which often results in low inter-annotator agreement.
Short texts, especially from social media, frequently contain informal language,
abbreviations, emojis, and sarcasm, further complicating accurate sentiment de-
tection. Addressing these difficulties is essential for advancing sentiment analysis
and related Natural Language Processing (NLP) tasks and applications.

Although pre-trained Transformer-based models such as BERT [4] have sig-
nificantly advanced sentiment analysis [1,4,8], critical challenges remain, includ-
ing handling class imbalance, data scarcity, and subtle semantic cues within
short texts. Recent research has shown that expanding training data through
generative data augmentation [2], refining model architectures [14], and using
domain-specific pre-training [7] potentially enhance the model’s performance.
However, only a few studies systematically evaluate these approaches in com-
bination. Existing research predominantly focuses on binary sentiment classifi-
cation or assumes access to large, well-curated datasets, leaving open questions
about the optimal strategies for multi-label emotion detection in small, noisy
and inherently subjective text corpora.

In this paper, we address these challenges through a comprehensive evalu-
ation of the following three key strategies: (1) continued domain-specific pre-
training to better capture linguistic nuances, (2) generative data augmentation
(GDA) to alleviate data scarcity, and (3) classification head variations to en-
hance parameter efficiency and adaptability. Our experiments were carried out
on 2,768 short English texts from the SemEval 2025 Task 11 corpus [3], utilizing
small Transformer-based language models, specifically BERT [4] and its vari-
ant RoBERTa [8]. In this work, we define small as language models with fewer
than 1 billion parameters, following [17]. Such models offer a favorable trade-off
between performance and computational efficiency, making them well-suited for
deployment in resource-constrained real-world scenarios. Additionally, we apply
SHAP [9] analysis to improve the interpretability of the predictions.

The following summarizes our main contributions:

— We systematically evaluate three strategies — continued domain-specific pre-
training, generative data augmentation, and classification head variations —
for multi-label sentiment classification in short texts, targeting challenges of
linguistic sparsity, data scarcity, and model efficiency. We release the code
and dataset on GitHub.?

— Our results show that moderate generative data augmentation improves
BERT-based model performance, while excessive domain-specific pre-training
can add noise. Variations in classification heads yield minimal gains. These
findings provide practical guidance for BERT optimization in real-world,
short-text datasets.

3 https://github.com/faerber-lab/shorttext-sentiment-transformers
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— We employ SHAP analysis to interpret model predictions, offering insights
into feature contributions and enhancing model transparency in short-text
sentiment classification tasks.

2 Related Work

Transformer-Based Text Classification. Transformer-based models such as BERT
[4] have become the state of the art for text classification, largely due to their
ability to encode contextualized representations with bidirectional attention [1].
Compared to earlier architectures like LSTMs, Transformers more effectively
capture long-range semantic dependencies. Beyond model architecture, the quan-
tity of available training data strongly influences performance. [7] and [10] show
that larger training sets generally lead to improved generalization in NLP tasks.
BERT [4] and its refined variant RoBERTa [8] are often the starting points for
a wide range of downstream applications. ROBERTa’s removal of next sentence
prediction and its employment of extended pre-training with dynamic mask-
ing enhance performance on multiple benchmarks [8,6]. In typical classification
scenarios, the hidden representation of the [CLS] token is passed through a clas-
sifier, and both the Transformer layers and the classifier head are fine-tuned to
maximize the probability of the correct label. Adjustments in the head’s archi-
tecture, such as varying embedding size or adopting parameter-efficient layers
like projected attention [14], can further enhance performance [20].

Data Augmentation. Data augmentation has been widely adopted to improve
model generalization in NLP tasks. It typically involves selecting or creating
meaningful samples, such as work by [16] or adding extra information [5]. While
adversarial approaches have been explored [5,12], their complexity and mixed
empirical results have prompted interest in simpler, generative methods. [2] pro-
poses a more straightforward strategy, using GPT-3 to generate new training
examples and filtering them to retain only the most promising candidates. Even
with a dataset of only 26 examples and two labels, they report substantial accu-
racy improvements, but also observe that excessive augmentation can introduce
noise and ultimately degrade performance [11].

Generative Data Augmentation. Although generative data augmentation (GDA)
has been explored in previous work [13], we adapt it here for multi-label senti-
ment classification on short texts. In contrast to Unsupervised Data Augmenta-
tion (UDA) [21], which emphasizes consistency training on unlabeled data, we
directly generate new examples using a state-of-the-art language model (e.g.,
GPT-40) and incorporate them into the training set without additional filtering.
We refer to this approach as Generative Data Augmentation (GDA). By verify-
ing that the synthetic samples remain domain-consistent, we aim to capture rare
sentiment cues and edge cases often missing from the original dataset. Similar
to prior studies, we hypothesize that augmenting too aggressively may introduce
noise and lead to performance plateaus or overfitting, but a moderate infusion
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of diverse synthetic data can substantively boost our multi-label classification
performance.

3 Methodology

Our work focuses on investigating the performance of Transformer-based small
language models for the short-text multi-label sentiment analysis task. Given a
short text as the input, the model predicts one or more sentiment labels that best
describe the emotional content of the input text. Formally, let D = {(z;, Y;)}¥,
represent the dataset, where each sample consists of:

— x; € X: a short text sample as the input

— Y; C V: a subset of sentiment labels assigned to x;, where:
Y = {Anger, Fear, Joy, Sadness, Surprise} is the set of all possible sentiment
classes.

Unlike single-label classification, each instance in the dataset can be asso-
ciated with multiple sentiment labels simultaneously. To evaluate model per-
formance, we employ standard multi-label classification metrics following [3],
including Accuracy, F1 Score, Macro F1 Score, and Cohen’s Kappa Score. The
Macro F1 Score ensures a balanced assessment across all sentiment categories,
addressing potential class imbalance issues.

3.1 Approach

In this work, we investigate three distinct approaches to enhance the perfor-
mance of Transformer-based language models, described in detail below. Our
experiments focus on BERT and its variant, RoOBERTa, as the base models.

Continued Domain-Specific Pre-training This approach involves continu-
ing the pre-training of base language models on domain-specific corpora, as rec-
ommended by [15]. This strategy is particularly relevant for short-text sentiment
classification, where limited context and sparse linguistic cues make capturing
domain-specific language nuances critical. Supporting this, [11] demonstrated
that domain-focused pre-training leads to significantly greater performance gains
than merely increasing the size of the general training dataset beyond a certain
threshold, highlighting the importance of specialized knowledge for improving
accuracy in contextually constrained scenarios such as short texts.

To perform continued pre-training of the models in our experiment, only the
text field of the training dataset is utilized, following the work by [15]. The text
samples are tokenized using a pre-trained tokenizer, with each model employing
its corresponding tokenizer from HuggingFace [19] library. The models are then
trained on these tokenized text samples using the masked language modeling
(MLM) objective, wherein tokens are randomly masked with a probability of
15%. Pre-training is carried out for 50 epochs with a learning rate of 2 x 107>
and a weight decay of 0.01.
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Generative Data Augmentation (GDA) This approach enhances the origi-
nal dataset by incorporating automatically generated samples from a generative
model, which is particularly beneficial for our task where data scarcity poses sig-
nificant challenges. By expanding the training data with synthetic examples that
reflect the original dataset-specific language patterns, GDA helps models better
capture subtle linguistic nuances that are often underrepresented in particularly
small datasets. Prior studies have demonstrated that such augmentation can
significantly improve model performance in certain cases [7,10].

To augment the original training set in our experiment, we utilized the Ope-
nAl completions API endpoint with a fine-tuned GPT-40-mini model. This model
was fine-tuned for three epochs on a partitioned training set incorporating sen-
timent labels, to match the label distribution of the dataset under test. The
system prompt specified the following instruction:

Generate short texts with their corresponding sentiment labels. The senti-
ment labels include Anger, Fear, Joy, Sadness, and Surprise. The texts are
in English and have a maximum length of 256 characters.

For each generated example, we provided the same prompt along with an
output template in a JSON schema, which included a text field and an array of
assigned sentiment labels. This procedure was repeated until a total of 11,684
augmented examples were generated, a number chosen to align with our available
computational resources. Since the generated texts exhibited slight variations in
average length compared to the original dataset, many samples were split into
two or three parts to better align with the original training domain. Subsequent
fine-tuning on the augmented dataset resulted in improved model performance,
reducing label ambiguity, and confirming that the generated data maintained a
quality comparable to that of the original dataset. The class distribution of the
original dataset and the dataset after augmentation using the generative data
augmentation method are presented in Tables 1 and 2, respectively.

Classification Head Architectures In the third approach, we evaluate differ-
ent architectures for the model’s classification head, a component especially crit-
ical for short-text sentiment classification where limited input length demands
efficient extraction and integration of the model features. As highlighted by [18],
the design of the feed-forward classification head can substantially impact overall
model performance. We compare two distinct classification head architectures:
(1) a fully-connected layer and (2) projected attention, described in detail below.

A fully-connected layer architecture provides a straightforward mapping
from encoded features to labels. Concretely, it consists of a fully-connected layer
network with intermediate ReLU activation function and dropout layers, as illus-
trated in Figure 1. In this setting, the hidden size h of the pre-trained model
serves as the input dimension. This is followed by [ linear layers, each with an
internal classifier size c¢. The final classification layer produces an output of size
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Fig. 1. Tllustration of the fully-connected  Fig, 2. Illustration of the projected atten-
layer classification head. tion classification head.

equal to the number of labels. Finally, a sigmoid function is applied to compute
the probability for each label, following the practice in multi-label classification.

The second architecture employs the projected attention mechanism, as
proposed by [14]. This technique incorporates an attention mechanism (see Fig-
ure 2) to dynamically focus on important features — potentially enhancing the
model’s ability to capture nuanced sentiment signals in sparse, context-limited
short texts. In this architecture, the classification head consists of a linear projec-
tion layer that transforms the pre-trained model’s output size h to the attention
dimension d. This is followed by a multi-head attention mechanism with k atten-
tion heads and an embedding dimension of d. Lastly, an attention-based classifier
projects the attention output to match the number of labels.

3.2 Dataset

Our experiments are conducted on the SemEval 2025 Task 11 dataset [3], which
comprises 2,768 short English texts, each labeled with zero, one, or multiple
sentiment classes: {Anger, Fear, Joy, Sadness, and Surprise}. On average, each
text consists of 78.4 characters, corresponding to approximately 15 words, which
categorizes this task as a “short text” classification task.

The distribution of labeled classes in the training set is presented in Ta-
ble 1. The dataset exhibits a class imbalance, with the “Fear” class being over-
represented (58.2% of the total instances) and the “Anger” class being under-
represented (12.0% of the total instances). This may introduce bias in the classi-
fication model, potentially leading to a higher propensity for predicting the over-
represented class (“Fear” class) and a reduced likelihood of correctly identifying
instances of the under-represented class (“Anger” class). The class distribution of
the dataset after augmentation with the generative data augmentation method
is presented in Table 2.

3.3 Experimental Details

In the experiment, we consider four different variants of BERT and RoBERTa
pre-trained models as base models for the task-specific fine-tuning: (1) bert-base,
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Table 1. Original dataset class distribu- Table 2. Augmented dataset class distri-
tion. bution.

Label Frequency Probability (%) Label Frequency Probability (%)

Anger 333 12.0 Anger 2227 19.0
Fear 1611 58.2 Fear 7606 65.0
Joy 674 24.3 Joy 3577 30.6
Sadness 878 31.7 Sadness 4884 41.8
Surprise 839 30.3 Surprise 4645 39.7

(2) bert-large, (3) roberta-base, and (4) roberta-large. Each model is initial-
ized from a checkpoint available in HuggingFace [19]. This setup enables a compar-
ative analysis of BERT and RoBERTa model architectures while also assessing
the impact of model size.

In each training configuration, all four models are fine-tuned twice: once
without continued pre-training and once with additional pre-training on domain-
specific data. In the first configuration, the models are pre-trained and fine-tuned
on the original training dataset provided by [3]. In the second configuration,
33.3% of the artificially generated samples are incorporated to expand the train-
ing dataset. This process is then repeated twice, once with 66.6% of the generated
samples and again with 100% of the generated samples, to analyze whether per-
formance improves further or diminishes. Before tokenization, all words in the
training dataset are converted to lowercase, and hyperlinks as well as punctua-
tion marks are removed.

For all configurations, the classification head consists of a fully connected
network with [ = 1 linear layer and an internal classifier size of ¢ = 768, which
matches the hidden size of the BERT models. To determine whether a different
classification head size or architecture improves model performance, the best-
performing base model from the initial trials is further fine-tuned with a fully
connected classification head containing [ = 2 and [ = 4 linear layers. Addition-
ally, fine-tuning is performed with a “Projected Attention” head incorporating
k=1 and k = 2 attention heads.

All models are fine-tuned for 30 epochs with a learning rate of 2 x 1075,
a weight decay of 0.01, AdamW optimizer, and a training and evaluation batch
size of 32. All experiments were conducted on NVIDIA A100 and V100 GPUs,
using the single, predefined train-validation-test split specified by the original
dataset to ensure consistency with prior works. Other hyperparameter settings
and implementation details are provided in our GitHub.

3.4 Explainability and Reasoning Metrics

To further understand the reasoning behind model predictions, we generate con-
fusion matrices and employ explainability library SHAP (SHapley Additive exPla-
nations) [9] to analyze feature importance in classification decisions. Confusion
matrix analysis helps identify common misclassifications and potential biases,
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Table 3. Model performance across different training variations.

‘Original Dataset‘0.33 Augmentation‘0.66 Augmentation‘l.o Augmentation
‘Acc. F1 Score ‘Acc. F1 Score ‘Acc. F1 Score ‘Acc. F1 Score

Model Pretrained

bort-base Yes 0.365  0.694 |0.375 0.687 0.365 0.71 0.438  0.706
No 0.344 0677  [0.313 0.686 0.406 0.715 0.354  0.666

bort-large | YES 0 427 0.697  |0.406 0.708 0.375 0.697 -
& No 0.689  0.365 0.698 0.385 0.703 0.406  0.715
bortab Yes 0417 0707 |0.365 0.678 0.406 0.693 0427  0.719
roberta-base  No 0.396  0.711  |0.396 0.698 0.406 0.706 0.458 0.749
obertatarse Y 0448 073 |0.406 0.74 0.417 0.736 0.396  0.733
€% No 0.469  0.77  |0.396 0.719 0.469 0.764 0.458  0.767

providing valuable information about the limitations of the models’ decision-
making process. Meanwhile, SHAP utilizes Shapley values to compute feature
contribution scores, enabling a detailed assessment of input feature importance.
By applying SHAP analysis, we can determine the impact of specific words on
sentiment classification, offering a more interpretable understanding of model
behavior.

4 Evaluation

We conducted evaluation experiments to assess the impact of the three strategies
outlined in Section 3.1, Approach. Additionally, we performed an explainability
analysis to gain deeper insights into the model’s decision-making process. The
main experimental findings and explainability results are presented in the fol-
lowing sections.

4.1 Main Results

The evaluation results for continued pre-training of the models and data aug-
mentation techniques are summarized in Table 3 and illustrated in Figure 3,
while the experiment results for classification head architecture variation are
presented in Table 4.

As shown in Figure 3, after approximately 500 training steps, the F1 Score of
the bert-base, bert-large, and roberta-base models plateaus, indicating min-
imal further improvement. In contrast, the roberta-large model continues to
benefit from extended fine-tuning. Additionally, while larger models generally
achieve better performance, the performance gap between bert-base and bert-large
on the unmodified training set is marginal, with bert-base even outperforming
bert-large in one instance. Conversely, the roberta-large model consistently
outperforms roberta-base and is generally the best-performing model overall.

Overall, although larger models, such as bert-large and roberta-large, gen-
erally perform better, smaller models can be improved effectively through data
augmentation and domain-specific pre-training. Among these, data augmenta-
tion proved most effective, improving all models except roberta-large. Modi-
fying the classification head had little impact on performance but may reduce
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models during continued pre-training on models during continued pre-training on
the original dataset. the original dataset.

trainable parameters, which is beneficial in resource-constrained settings. In the
following, we discuss the impact of each of the three approaches more in detail.

Impact of the Continued Domain-Specific Pre-Training. When comparing the
evaluation loss (Figure 5) with the training loss (Figure 4) during pre-training,
it becomes evident that overfitting occurs rapidly, leading to diminishing returns.
Specifically, continued domain-specific pre-training appeared to slightly improve
the performance of the bert-base and bert-large models in most cases. However,
the roberta-base and roberta-large models generally performed better without
additional pre-training. This may be attributed to the fact that RoBERTa mod-
els were pre-trained for a longer duration on larger corpus, making continued
pre-training prone to overfitting and a subsequent loss of generalization.

Impact of Generative Data Augmentation. The evaluation results of the model
for different data augmentation rates are shown in Figure 6 and Table 3. Overall,
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Fig. 6. Average F1 Scores and accuracy across different data augmentation rates.

accuracy and F1 scores increase as the training set expands, although gains
are less than expected. Notably, smaller models such as bert-base show bigger
performance improvements compared to larger models e.g., roberta-large.

A slight expansion of the training set initially results in a small drop in
performance relative to the unmodified dataset. However, as the dataset size
increases, performance improves: the dataset with 66% augmentation performs
comparably to the original, while the fully augmented dataset achieves the high-
est results — improving accuracy by two percentage points and F1 Score by an
average of 0.01. In contrast, the roberta-large model consistently experiences
performance degradation across all levels of data augmentation.

These findings suggest that the dataset size threshold, as described by [2],
has not yet been reached. A further expansion of the training set might yield
additional performance gains. Pre-training on the extended dataset appears to
be less effective than direct fine-tuning, likely due to the introduction of noise
into the domain-specific training data.

Overall, our results demonstrate that generative data augmentation is an
effective strategy, which leads to a moderate improvement in model performance.
By enriching the training domain with unmoderated examples generated by a
state-of-the-art text generation model, we achieved measurable improvements
in model performance. These findings underscore the potential of leveraging
generative techniques to enhance the diversity and quality of training data.

Impact of Classification Head Architecture Variation. The evaluation results of
the model with different classification heads is summarized in Table 4. Overall,
increasing the number of parameters in the classification head did not yield signif-
icant improvements in model performance. In fact, larger classification heads re-
sulted in diminished performance, likely due to overfitting. Despite having fewer
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Table 4. Evaluation results of roberta-large model with different classification heads
(fe—fully-connected and Proj. Att—projected attention).

Class. Head Accuracy F1 Score Params

fc 768x2 0.469 0.77 1x
fc 768x4 0.417 0.743 3x
fc 1536x2 0.458 0.77 4x
fc 1536x4 0.455 0.756 12x

Proj. Att. 128x1  0.432 0.743 0.44x
Proj. Att. 128x2  0.458 0.756 0.61x

parameters, models utilizing the projected attention head demonstrated com-
petitive effectiveness. This suggests that a well-designed attention-based classi-
fication head can enhance performance efficiency, achieving better results per
parameter compared to standard fully connected layers.

4.2 Explainability Analysis Results

Figure 7 shows the class-specific influence graph for the “Fear” and “Anger”
classes produced by SHAP analysis, with the graphs and explanation for other
classes provided in the Appendiz. These visualizations offer insights into the key
features influencing classification decisions by the model. For instance, the to-
ken police emerges as a strong predictor for the “Fear” class, indicating that the
model has learned to associate this token with expressions of fear in the dataset.
For the “Anger” class, insulting and furious are a strong positive predictor,
while ailments and laughed contribute minimally. These influence patterns serve
as baseline indicators of the model’s interpretability. The SHAP analysis fur-
ther reveals that the models construct a structured representation of sentiment,
leveraging specific words and word combinations to make predictions.

Furthermore, the confusion matrices in Figure 9 offer deeper insights into
the challenges of sentiment classification in short texts. They reveal that classes
with higher prior probabilities are more accurately classified, while low-frequency
classes suffer from reduced accuracy, reflecting the model’s reliance on the under-
lying data distribution when making decisions. For instance, the high number of
false positives for the “Fear” class suggests a learned bias, providing insight into
how the model internalizes and applies decision boundaries. This underscores
how both the quality of the training data and the complexity of emotional ex-
pression influence model interpretability.

4.3 Reviewer Agreement and Human Evaluation

Although an F1 Score below 0.9 and an accuracy under 80% may initially seem
suboptimal, it is crucial to recognize that multi-label sentiment analysis is inher-
ently subjective. The high-dimensional nature of sentiment data and the limited
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class. class.

long-context understanding in short texts often prevent exceptionally high accu-
racy. To further investigate this subjectivity, we conducted a human evaluation
in which three English speakers (non-native) annotated a subset of texts from
the development set and compared it against the gold truth. This assessment
provided insights into annotation variability and the inherent challenges of sen-
timent classification.

The results, as summarized in Table 5 and Table 6, show that our model
significantly outperforms human annotators, demonstrating its robustness in
handling nuanced sentiment distinctions. Notably, our best model, despite an
accuracy of only 0.469 and an F1 Score of 0.77, outperformed human evaluators,
underscoring its capability in sentiment classification. Moreover, the moderate
Cohen’s Kappa Scores (ranging from 0.293 for "Fear" to 0.709 for "Joy") high-
light the difficulty of achieving consistent sentiment annotations. Lower agree-
ment for emotions such as Fear, Sadness, and Surprise suggests that these cate-
gories are inherently more ambiguous, particularly for non-native speakers. This
variability further supports our observation that the model effectively navigates
the complexities and subjectivity inherent in sentiment classification.
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Confusion Matrix for ‘anger* class Confusion Matrix for “fear’ class Confusion Matrix for ‘joy" class
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Fig. 9. Confusion matrix of the model.

Table 6. Cohen’s Kappa Score between

Table 5. Human evaluations vs. our
human evaluators.

model.
9
Accuracy F1 Score Cohen’s Kappa
Human Evaluator 1 0.224  0.549 ?nger 8’§8§
Human Evaluator 2 0.290 0.612 Jear 0.709
Human Evaluator 3 0.252  0.578 o 0.307
Our Model 0.469 0.770 acness '
Surprise 0.346

5 Conclusion

In this study, we investigated the impact of three key factors — (1) continued
domain-specific pre-training, (2) generative data augmentation (GDA), and (3)
classification head architecture — on multi-label sentiment classification in short
texts. Given the limited contextual information typical of short-text datasets,
these factors are especially critical for improving the performance of small Trans-
former-based language models, e.g., BERT and RoBERTa.

Our results indicate that while larger-parameter models (e.g., roberta-large)
generally outperform smaller-parameter models (bert-base and roberta-base),
moderate application of GDA consistently enhances the performance of the
smaller models, suggesting that synthetic samples effectively mitigate data scarcity.
Continued pre-training was beneficial for BERT-based architectures but intro-
duced noise in RoBERTa variants, highlighting the model-specific nature of do-
main adaptation for short texts. Although modifications to the classification
head had minimal impact on accuracy, they may reduce the number of train-
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able parameters — an important consideration for resource-constrained settings
common in real-world applications.

Our findings advance the development of tailored learning methods to over-
come practical data difficulties, offering actionable insights for optimizing multi-
label sentiment classification in short texts — a domain characterized by sparse
and ambiguous data. Future work could explore refined filtering strategies for
GDA and evaluate a broader range of architectures to further improve perfor-
mance, particularly in resource-limited and complex data scenarios.
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Appendix

The following shows the class-specific influence graph for each sentiment class
produced by SHAP analysis. As explained in §4.2, these visualizations reveal
the key features that influence the predictions of the model for each class, as
described below.

In the “Joy” class, wonderful and thank are a strong positive predictor,
whereas horrible and racism are a strong negative predictor. For the “Surprise”
class, gt* followed by reality, something, and accidental appear as a strong pre-
dictor, while tears and heavy have minimal influence. These findings indicate
that the model has learned to associate these tokens with class-specific expres-
sions present in the dataset. The influence patterns from the SHAP analysis
serve as baseline indicators of the model’s interpretability.
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Fig.10. SHAP graph for “Joy” emotion Fig.11. SHAP graph for “Surprise” emo-
class tion class

4 Here, gt is an artifact from scraped data (representing the “greater than” symbol
in HTML encoding), likely introduced during web scraping. Its presence is spurious
and should be disregarded in the interpretation.
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