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Abstract We experimentally demonstrate a novel, low-complexity Fourier Convolution-based Network
(FConvNet) based equalizer for 112 Gb/s upstream PAM4-PON. At a BER of ~ 5 x 103, FConvNet
enhances the receiver sensitivity by 2 and 1 dB compared to a 51-tap Sato equalizer and benchmark

machine learning algorithms, respectively. ©2024 The Author(s)

Introduction

The demand for higher data rates in passive
optical networks (PONs) has been increasing
due to the growth in data trafficl'}2l.  While a
50G standard for PONs using intensity modula-
tion and direct detection (IMDD) with OOK has
been recently agreed upon, research efforts are
already focused on achieving 100 Gb/sPl, e.g.,
50 GBaud PAM4. Such high-speed PONs, em-
ploying higher-order modulation formats, are more
prone to nonlinearities. The dynamic range of
packets received at the optical line terminal (OLT)
in upstream PONSs, primarily due to differential
loss, poses a challenge for implementing burst-
mode trans-impedance amplifiers (TIAs) to sup-
port 50 GBaud PAM4 transmission[“8]. Addition-
ally, these PON links need to adhere to the 29 dB
optical power budget of legacy PON systemsl4.
To address this, semiconductor optical amplifiers
(SOASs) can be used as pre-amplifiers in the OLT
receiver to enhance receiver sensitivity. However,
operating the SOA with a constant bias can lead
to degradation in high-power packets due to gain
saturation-induced patterning effectsl*l. The distor-
tions caused by the nonlinear behavior of the SOA
typically require more advanced DSP compared
to traditional feed-forward equalizers (FFEs), such
as deep neural networks (DNNs)"l. However, to
guarantee energy-efficient PONs, it is essential to
have lower complexity compared to DNNs.

A frequency-calibrated sampling convolutional
and interaction network (FC-SCINet) based equal-
izer was simulated in®l for a downstream 100G
PON with a path loss of 28.7 dB. At 5 km,
FC-SCINet improved the bit-error-ratio (BER) by
88.87% compared to FFE and a 2-layer DNN with
10.57% lower complexity. FC-SCINet enables ef-
fective time-series modeling with intricate tempo-

ral dynamics and fine-tuning of signal spectral at-
tributes.

In this paper, we present a novel machine
learning algorithm (MLA) for equalization, named
Fourier attention-based convolutional neural net-
work (FConvNet), and compare it with FC-SCINet
in an experimental 112 Gb/s PAM4 upstream PON
setup. FConvNet is based on TimesNet®, incor-
porating multi-periodicity in time series analysis
by capturing recurring cycles within the data. In
upstream PONs, the SOA combined with direct-
detection produces interference to the signal, intro-
ducing multi-periodicity through nonlinear effects,
crosstalk, and reflections. Converting the con-
ventional 1D time series into 2D tensors captures
intra-period and inter-period variations, enhancing
the analysis of cycle relationships. A 2D represen-
tation, considering time and frequency domains as
dimensions, integrates temporal and spectral in-
formation for a comprehensive interpretation. This
method converts the initial 1D time series into orga-
nized 2D tensors, making it easier to process with
2D kernels. It can also be expanded to handle mul-
tivariate time series by reshaping all variables(®.
FConvNet also incorporates a CNN (i.e., ConvNet)
procedure with a Decomposition layer inspired
by FC-SCInetl®], which helps reducing complexity
and accelerates training efficiency. FConvNet im-
proves chromatic dispersion (CD) tolerance at 2.2
km compared to a 51-tap Sato equalizer, achieving
a 2 dB received optical power (ROP) improvement
and a 1 dB ROP enhancement compared to DNN,
FC-SCINet, and CNN at a BER of ~5x10~3. FCon-
vNet reduces the complexity by 78.9% and 74.4%
compared to DNN and CNN, respectively.
Proposed Equalizer

The FConvNet consists of three modules: The
Signal Partition, ConvNet, and Reconstruction.
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Fig. 1: (a) Block diagram illustrating the novel FConvNet equalizer. (b) Time/Frequency domain representation of 100 transmitted
(target)/received consecutive samples at -5 dBm received power, showing the prediction capability of FConvNet, DNN, and CNN.

FConvNet processed 13 random non-repeating
number sequences (RNS) for each ROP from the
OLT, each with a length of T' from C' independent
recorded trials, represented as X € R7*¢. The
equalized sequence is denoted as Y € RT*¢. Ini-
tially, we assess the sliding time window approach
with window sizes (ws) on X € R***¢, Then, a
single-layer convolution neuron (kernel size sy =
3) captures the initial temporal features. Finally,
similarly to FC-SCINet!®!, we utilize the Decom-
position layer to amplify the temporal signal by
enhancing high-fluctuating components.

Inspired by multi-resolution analysis methods!'%l,
FConvNet performs fine-scale equalization opera-
tions on the time-frequency bins with the highest
energy concentration and combines their signals
using weighting factors based on energy density.
Essentially, we view the total channel distortion
as the result of multiplying a spectrum-based dis-
tortion o (W1|F(X)|) with the transformed time
domain values o5(W>X). The |F(X)| denotes the
amplitude spectrum of X. The o(WW.S) represents
the neural network with parameter W performed
on S. oy and o, are approximated by Softmax and
ConvNet as shown in Fig. 1(a).

Y = Softmax(F (X)) x (ConvNet(X)) (1)
Signal Partition: We select the peak-k amplitude
values fio,... ;, = Peaky(|F(X)|) € {1,2,---,%
f2 with corresponding window sizes w; = %
Based on k£ window sizes, we partition the X into
k sub-series with length I~ € {T/2,--- ,T}. After
zero padding, we reshape them into a 2D matrix
X corresponding to wy. The signal with the same
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length shares the same minimal time resolution
wy.. The spectral component A* = |F(X*)| is fol-
lowed by a Softmax layer to learn the nonlinear
interference in frequency domain A*.

ConvNet: The ConvNet receives the reshaped
input X*. Afterwards, the interference is estimated
in the time domain denoted as o9, utilizing the
Inception block!', which is a component used in
CNNs that allows for the integration of multiple
different kernel sizes and receptive fields within
a single layer. The Inception block consists of
concatenated convolutions with kernel sizes of 1,
3, and 5. It uses a Gaussian error Linear Unit
(GeLU), which serves as a smoother nonlinear
activation function in comparison to ReLU. The
resulting output is denoted as X*.
Reconstruction: Followed by Eq. 1, we multiply
X* with A* to reshape them into the desired form,
resulting in Y*, as shown in Eq. 2.

vE = X x Ak (2)

Experimental Setup and Integrated DSP
The experimental setup for the 112 Gb/s up-
stream PON is depicted in Fig. 2. In the ONU,
we used a Keysight USPA DACS3 to generate a
56 GBaud NRZ PAM signal with 4 levels (PAM4)
and a sequence length of 216 symbols. The elec-
tric drive signal was amplified to a peak-to-peak
voltage of 2V to achieve sufficient optical modula-
tion amplitude at the low-cost electro-absorption
modulator (EAM), resulting in an optical transmit-
ted power of around 3.9dBm. A distributed feed-
back (DFB) laser provided the optical carrier at a
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Fig. 2: Experimental setup for the 112'Gb/s (56 GBaud) PON upstream using a standard single-mode fiber (SSMF) in the C-band.
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Fig. 3: BER vs. received optical power for FConvNet [window length (wl=64, 128)] compared to: (a) Sato (min./mean BER) and
CNN; (b) FC-SCINet [wl=64, 128], FC, DNN, CNN and Sato (min. BER, 51 taps). (c) Complexity comparison of different models.

wavelength of around 1540 nm. After 2.2 km trans-
mission, the signal was attenuated by a variable
optical attenuator (VOA) to set a specific ROP. The
OLT receiver consisted of an SOA with a 3nm-
bandpass filter to account for the higher SNR re-
quirements of PAM4 compared to OOK. A 40 GHz-
PIN photodiode coupled with a conventional am-
plifier was utilized due to the unavailability of an
avalanche photodiode with TIA in our laboratory. It
is worth noting that the latter option could have po-
tentially enhanced the receiver sensitivity even fur-
ther. Finally, the electrical signal was captured by
a 33 GHz-real-time oscilloscope at 80 GSa/s and
resampled to twofold oversampling for the blind
feed-forward clock recovery before equalization.

We addressed potential performance overesti-
mation caused by bit pattern recognition using a
bit stream based on RNS. For comparison, we
tested a 2-layer DNN, CNN, and FC-SCINet®l. To
determine the optimal architecture in DNN, we em-
ployed a range of 4 to 128 neurons. Note that
incorporating an additional layer resulted in neg-
ligible performance benefit. For CNN, a single
linear-layer architecture with 48 neurons was em-
ployed, as well as double linear-layer architectures
with 2048 and 256 neurons, respectively, serv-
ing as detectors. During the training phase for all
MLAs, L2 regularization was used, while the mean
square error function was utilized as the loss func-
tion. 15% of the data was used for testing and
10% for validation. For comparison with a linear
equalizer, we employed a decision-directed FFE
with 21/51 finite impulse response taps using the
Sato algorithm('?l to adapt the filter coefficients.
Results and Discussion

FConvNet performance was compared with that
of an optimized 2-layer DNN (2048, 256 neurons),
a CNN, and the FC-SCINet reported inf® all at
1 SpS, while Sato equalization at 2 SpS, using
216 symbols. FC without SCInet was also com-
pared, which enables only frequency-components
calibration using the Decomposition layert®l. Evalu-
ation was conducted by directly counting the BER

through Monte-Carlo across various ROPs.

As depicted in Fig. 3(a) and Fig. 3(b) at a BER
of ~5 x 102, FConvNet demonstrates a 2 dB im-
provement in ROP compared to a 51-tap Sato
equalizer (considering the min. BER). Moreover,
1 dB enhancement in ROP is achieved compared
to a 2-layer DNN, FC-SCINet and CNN. Note, the
BER was improved when increasing the window
length (wl128) in FConvNet. Fig. 1(b) showcases
the time/frequency domain representation of 100
consecutive transmitted/received samples at -5
dBm ROP, highlighting FConvNet has superior pre-
dictive capabilities in time domain compared to
DNN/CNN by means of temporal pulse narrowing.

Finally, we compared the complexity of FCon-
vNet (64/128wl) with the aforementioned MLAs.
The complexity analysis encompassed key metrics
including Real Multiplications per Symbol (RMpS),
median BER (mBER), and the composite met-
ric (1/(mBER x RMpS)) (BER/C), which serves
as an indicator of the performance-complexity
trade-off (higher is better) , as shown in Fig.
3(c). FConvNet's complexity can be calculated
as I:{MpSFConvNet = Nk, dm0d6|(n8 = Mgy + 1) +2-
n? + 2(dnk,dy)(ns — ni, + 1), where we only con-
sider the number of the multiplications. n; is the
sequence length of the input, d; djy and ny,,, ny, are
the dimension and kernel sizes of two Inception
blocks utilized in ConvNet, respectively. FConvNet
reduces the RMpS by 78.85% and 83.27% com-
pared to DNN and CNN respectively, and 13.99%
compared to Sato equalization.

Conclusion

A novel FConvNet equalizer was experimen-
tally demonstrated for a 112 Gb/s upstream PAM4-
PON. At a BER of ~ 5x 1073, it enhanced the ROP
by 2 and 1 dB compared to a 51-tap Sato equalizer
and benchmark MLAs, respectively. FConvNet re-
duced the BER/C by 78.9% and 74.4% compared
to DNN and CNN, respectively.
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