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ML approaches for OTDR diagnoses in passive
optical networks —event detection and
classification: ways for ODN branch assignment
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An ML-supported diagnostics concept is introduced and demonstrated to detect and classify events on OTDR
traces for application on a PON optical distribution network. We can also associate events with ODN branches
by using deployment data of the PON. We analyze an ensemble classifier and neural networks, the usage of syn-
thetic OTDR-like traces, and measured data for training. In our proof-of-concept, we show a precision of 98%
and recall of 95% using an ensemble classifier on measured OTDR traces and a successful mapping to ODN
branches or groups of branches. For emulated data, we achieve an average precision of 70% and an average recall

0f91%. © 2024 Optica Publishing Group
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1. NETWORK MONITORING AND FAULT
DETECTION

Event detection and classification are essential features in
diagnosing the fiber plant of passive optical networks (PONG).
This is of particular interest, especially in converged infrastruc-
tures combining residential, mobile, and business customers.
Optical time domain reflectometry (OTDR) is a well-known
diagnostic technique to obtain a spatially resolved attenuation
profile of the fiber and to identify critical fiber faults, e.g., the
location of a fiber break. In PONs, however, the optical dis-
tribution network (ODN) is realized as a point-to-multipoint
(P2MP) tree-like topology. In the simplest embodiment of
P2MP ODN, the optical line terminal (OLT), located at the
operator’s central office, is connected via fiber (feeder section)
to an optical power splitter in the field. Each optical network
unit (ONU) is then connected over a separate drop fiber
originating at the splitter (drop section), e.g., following a tree
architecture. Thus, although OTDR works well in the feeder
section where only one fiber is analyzed, the part of the OTDR
trace corresponding to the drop section comprises superposed
signals produced by back-scattered and back-reflected light
from all drop fibers. This superposition creates ambiguity,
which cannot be decomposed to isolate individual traces of
each fiber drop section without additional means. In practice,
more elaborated P2MP architectures with multilevel splicter
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hierarchy are also used, further exacerbating the difficulty of
the problem at hand.

Research has been published on investigating opportunities
to resolve the individual splitter arms in the drop section: in
[1,2] an intelligent splitter-monitor was introduced to enable,
among other functionalities, the insertion of an OTDR unit
that can be allocated via an optical switch to the individual
drop fiber sections, while in [3] individual OTDR units were
inserted into each ONU to allow continuous evaluation of
the individual drop fibers; in [4] a serialization of the parallel
lines behind the splitter is described to uniquely measure the
different drop fibers as if they were linearly concatenated; and
in [5] specific unique reflections for each of the ONUs could be
inserted to support assignment of individual ONU endpoints
in measured OTDR traces from the OLT. All these approaches
have in common the insertion of additional hardware resources
into either the ODN or the ONUs, which, in most cases,
are considered too costly and complex for the drop section
of PONE.

New investigations based on artificial intelligence (AI)
algorithms for reflective event detection and overlaid reflec-
tive event resolution have recently been reported [6-8], but
they require dedicated endpoint reflectors supporting event
classification along the PON ODN and do not address event
assignment to ODN branches.
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Thus, in this paper, we follow the concept of using an
OTDR unit centrally located at the OLT and avoiding addi-
tional hardware means. We rather introduce a software concept
for the OTDR trace analysis using machine learning (ML)
algorithms to detect and classify events across a PON ODN,
including the drop sections. We analyze the performance of
different ML methods, ensemble classifier and neural network,
for identification and classification. Further, we associate ODN
branches with those events by using infrastructure deploy-
ment data of the PON topology. This paper is an extension
of our work published in [9]. We add more discussions of the
associated references, additional training data opportunities
using OTDR simulations from a system-simulator tool from
VPIphotonics, and extend the details about the branch assign-
ment step. We can conclude that we can identify and classify
events with high precision and recall values up to 98% and
95%, respectively, and that we can single out branches with
high precision using infrastructure deployment data of <10 m.

The paper is structured as follows: In Section 2, we intro-
duce the ML-based OTDR event detection concept, and
in Section 3, a reference network is defined to evaluate our
concept along with the training data generation. Section 4
introduces our applied ML models, covers the event detec-
tion and classification results, and discusses the ODN branch
assignment. Section 5 provides the conclusion.

2. ML-BASED OTDR EVENT DIAGNOSTIC
CONCEPT

Combining ML-supported OTDR trace monitoring with
a PON-specific system or topology information enables the
association of events and their nature with a certain probabil-
ity to ODN branches. First, we use ML methods to classify
each OTDR data point of an OTDR trace into an event cat-
egory and, this way, associate an ODN location with an event,
e.g., reflection or attenuation. Second, system or network
information is acquired (see Fig. 1), such as

* infrastructure deployment data of the ODN topology,
including the number of split stages and their split ratios, as
well as the fiber length of the individual drop sections;

¢ round-trip time (RTT) and equalization delay for ONUs
corresponding directly to approximations of the distance of
the ONUs from the OLT location and diagnostic data from all
transmitters within the PON, such as transmitted and received
optical power levels;

¢ available data from the physical medium-dependent
(PMD) layer and transmission convergence (TC) layer of the
PON system.

The acquired parameters can be stored in a knowledge base
to generate a reference of the infrastructure and system. Such
data can be updated over the PON lifetime using experimental
data or based on abstract mathematical modeling. A twofold
operation of the system can be envisioned:

Instantaneous analysis: An OTDR trace (or multple
traces) collected within a short observation window is analyzed
with the goal of event assignment to specific splitter branches,
a group of branches, and/or ONUs. Based on infrastructure
deployment data and other prior information, events can be,
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Fig. 1.  Concept of combining machine learning/artificial intelli-
gence supported OTDR trace monitoring and analysis with accessible
PON-specific system data to enable probabilities for events and their
nature to be associated with individual ODN branches of a PON.

with a certain probability, assigned to specific ODN branches.
Based on the geographical location of connected ONUs as
well as deployment maps of the ODN, events may be localized
topographically. Depending on what kind of OTDR measure-
ment is possible and how much prior information is available,
splitter branches where no ONU is connected or even unused
splitter branches can be identified.

Meta-analysis: Tracking the evolution of instantaneous
analysis/reinterpreting past observations over extended periods
of time enables uncovering events that otherwise may be mis-
interpreted, wrongly classified, or considered improbable by a
one-off instantaneous analysis due to insufficient prior knowl-
edge. For example, the instantaneous analysis may not discover
a fiber break in a drop section where no ONU is connected if
no deployment data was fed into the knowledge base. However,
by comparing instantaneous analysis from before and after the
break, a conclusion can be drawn that the observed change is
an anomaly.

The knowledge base should also contain reference informa-
tion on how a fiber impairment or fault, like bending, cracks,
or connectors, typically looks in an OTDR trace. This way,
the knowledge base enables an advanced OTDR trace analysis
by applying expectations and attempting to find patterns in
the OTDR traces using Al or ML techniques. The goal is to
separate the superposed events for individual optical fiber lines
and identify changes or faults in the fiber infrastructure in the
longer term.

Applying Al or ML algorithms is beneficial here for two
reasons: In the first case of separation of traces, the AI/ML
algorithms help to solve the mathematical problem of an
underdetermined set of equations; with the OTDR measure-
ment from the OLT, one has only access to a single trace, but
this signal comprises superpositions from N splitter branches.
In the second case of identification of anomalies in the fiber
plant, AI/ML helps identify patterns or changes over time and
the reasoning.

The inference engine interprets and evaluates the data
from the knowledge base to provide an event detection and
classification as well as an association with the drop sections.
Different implementation approaches exist, e.g., probabilistic
approaches, backtracking, opportunistic reasoning (backward
or forward chaining), or other AI/ML-powered approaches.

The system is trained over its lifetime, starting with a ref-
erence PON infrastructure architecture, including scenarios
with different configurations like the number of splitter stages
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and splitting ratios. The knowledge of events that constitute
OTDR traces are the underlying basis for the AI/ML training.
Events can stem from a multitude of effects: PON splicter
losses, fiber breaks/cuts, point reflections from open connec-
tors, or fiber attenuations from aging/watering effects. Updates
over time with detailed information about the transmission
system like PMD, TC, and media access control (MAC) can be
passed to the system continuously from the OLT, which acts
as a master and has a deep knowledge of the overall system.
Periodic OTDR measurements and changes inside the PON-
related data show up as characteristic patterns and thus enable
the isolation of OTDR events inside the ODN drop section
and correlate to a dedicated fiber.

3. REFERENCE ODN AND TRAINING DATA

The evaluation of the instantaneous concept from Section 2
desires the definition of a reference PON-ODN that can be
used for training data generation by experiments and simu-
lations, respectively. Further, it can be applied for test data
generation to analyze its performance.

Reference ODN: A tree-like architecture with a 12 km
feeder section connected to a 1-by-8 power splitter offer-
ing equal power distribution for each splitter branch and a
loss distribution variation of less than +/0.5 dB. To build a
PON-ODN, we connected 8 fibers with different lengths
between 1.5 and 6 km, resulting in a maximum fiber distance
for the longest path of about 18 km. All fibers are assembled
with SC/APC type connectors; no ONUs are attached to the
fiber endpoints. Figure 2(a) shows a schematic of the refer-
ence ODN for which the parameters according to Table 1
apply.

Simulated training data generation and associated mod-
eling: Ensuring the generalizability of any ML algorithm
requires different topology configurations and enough training
data. It is often very time-consuming to build experimental
setups and execute large measurement sets. Thus, simulations
could considerably reduce the effort, enabling us to consider
many different topologies that cannot be experimentally mea-
sured otherwise. Furthermore, since ML algorithms can learn
from the visual signature of the OTDR trace, it is unnecessary
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Table 1. Relevant Component Parameter for the
Reference ODN

1/8 splitter insertion loss 10.5 dB
Fiber attenuation (1310 nm) ~0.4 dB/km
Fiber attenuation (1625 nm) ~0.3 dB/km
Return loss (open connector) 0.5dB

to numerically simulate the physical pulse propagation and
its back reflection. Therefore, a simpler and more efficient
way to generate training data sets can be used. In our paper,
we apply VPIlinkConfigurator [10], a network design envi-
ronment (NDE), to recreate the reference ODN and other
configurations.

Figure 2(a) shows the reference topology in the graphical
user interface of the NDE. Each piece of equipment, such as
fiber and splices, is modeled using the parameter settings cor-
responding to experimental data. The NDE can track physical
changes along the link using a parameterized signal representa-
tion such as averaged optical power, which allows for reducing
the otherwise computationally intensive simulation into very
efficient analytical transfer function calculations. Each com-
ponent is represented by transfer functions with respect to its
parameter set.

For the OTDR-like trace, the averaged optical signal power
is tracked through each component, which has its own inser-
tion loss and reflectance parameter in logarithmic [dB] units.
Therefore, all possible discrete local events can be emulated
and designed. In contrast to OTDR traces from a measure-
ment instrument, event description is not directly classified
as reflection or attenuation but only as the indication of tran-
sition between two sequential pieces of equipment. Only by
recognizing the change in power level can the corresponding
event classification of reflection and attenuation to a measured
OTDR trace be done. In addition, noise and component
margins, such as deviation of the splitting losses in the indi-
vidual channels, are not considered for the simulator. Zero
padding and interpolation were used to achieve a similar array
length of the measurement. Figure 2(b) shows the OTDR-like
trace from the NDE (orange) and a measured one (blue). The
NDE-generated OTDR-like trace matches the measured trace
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Fig.2. Reference topology (a) in the network design environment with IL as insertion loss and RL as return loss. (b) OTDR-like trace (orange)
obtained from the NDE and by measurements (blue). The inset shows the different resolution in the measured OTDR trace and the simulated

OTDR-like trace of a splice event.



very closely. The only significant difference is the reflected
power. The discrepancy is due to the nature of the OTDR
measurement in which the reflected pulse is observed, while
parameterized power and loss are considered in the NDE.
Additionally, the resolution of the reflection cannot be accu-
rately represented. Low pass filtering is required for more
precise emulation of the reflection and its time delay.

A total of 96 emulated traces have been generated with 8
different topologies for use as training data. The relevant com-
ponent parameters applied in the simulator are based on the
reference ODN with eight fully connected fibers of different
lengths. The other topologies are variations with different
active port connections while maintaining the exact fiber dis-
tances for the reference topology. In addition, fiber attenuation
was fixed to 0.65 dB/km and 0.38 dB/km for 1310 nm and
1625 nm, respectively. The high fiber attenuation accounts for
any additional connector losses and emulates the attenuation
slope from the experimental OTDR measurement, which
displays the trace after the pulse propagates twice the distance.

Measured training data generation: At the input of the
feeder fiber, a commercial OTDR measurement device opti-
mized for fiber-to-the-home (FT'TH) applications is used to
measure a set of total 180 OTDR traces with different mea-
surement device settings like OTDR wavelength (1310 and
1625 nm), OTDR pulse duration (50, 100, and 275 ns), and
measurement time (10, 60, and 180 s), which corresponds
directly to the applied averaging depth. A total of 120 of the
measured OTDR traces are used for training, while the remain-
ing 60 are used for evaluation. The train/validation split is
performed with seeded randomness.

4. PROOF-OF-CONCEPT FOR INSTANTANEOUS
ANALYSIS

To demonstrate the viability of our ML-supported OTDR
trace analysis concept, we evaluate measured OTDR traces
obtained in our reference ODN by using measured or simu-
lated training data, respectively. A subset of 60 measured traces
is the basis for evaluating our method—i.e., the OTDR traces
are used as model input, and the identified events by the mea-
surement unit as ground truth to compare the ML algorithm
output.
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Conceptually, our test and training data are preprocessed
using the following steps. First, we set values beyond the maxi-
mum fiber length to zero in the measured traces to avoid false
classifications. In the case of the simulated training data, we
additionally interpolate data points by averaging between
consecutive power values to match our ML model’s input
dimensions. Second, we determine the first order differences of
consecutive data points.

Finally, we normalize these values and use them as our model
input.

To investigate the feasibility of utilizing ML approaches,
we model the task of OTDR event detection as a classification
problem. A model is tasked to assign event classes (reflection,
attenuation, or no event) to each point in time in an OTDR
trace.

We evaluate the performance of (a) a simple baseline model
that assigns classes based on heuristically determined rules and
(b) two ML approaches, shown in Fig. 3. The first approach
is an ensemble classifier, a model that learns and aggregates
over multiple classifiers to improve stability. Specifically, we
use a random forest [11] with an ensemble of 50 decision tree
classifiers. Our second approach is a neural network based on
long short-term memory (LSTM) [12,13], an architecture that
sequentially processes data while keeping a memory of pre-
viously seen inputs. We test two different recurrent modules:
a standard LSTM and a BiLSTM. To the recurrent module,
we append a set of feedforward dense layers (64, 64, 32, 16)
with decreasing dimensionality to classify the three classes.
For the BiLSTM neural net, we added additional complexity
to the ML algorithms to counteract the differences between
measurements and intentionally more idealized OTDR-like
emulation.

Using the standard supervised learning approach, we train
the ensemble classifier and the neural net based on the LSTM.
Using a NVIDIA GTX 1060 (6 GB), the training was discon-
tinued after 2 h when there were no discernible improvements.
The event classification per OTDR trace is processed in at most
1 s. A split of 120/60 (training and test) is used for the experi-
mental data. The training of the BILSTM neural net is solely
based on simulated data, according to Section 3, to investigate
if synthetic OTDR data can be leveraged for model training
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ML-based methods for event detection and classification: (a) ensemble classifier, (b) neural network; two different recurrent modules are



Table 2. Performance of Our Models at Detecting
and Classifying Events in OTDR Traces’

Precision Recall

Experimental training data

Baseline 52% 69%
Ensemble classifier 98% 95%
Neural net (LSTM) 96% 88%

Simulated training data

Neural net (BiLSTM) 70% 91%

“Precision and recall values are reported as the macro average over all
classes.

on arbitrary topologies without needing prior measurement
information.

For evaluation of our baseline, ensemble, and LSTM
models we apply our measured OTDR traces. In the case of
the BiLSTM, we analyze a subset of the measured OTDR
traces from a single wavelength. As evaluation metrics,
we use precision and recall scores [14]. For a fixed class
¢;, we compare to the prediction p; by our model with
i € {reflection, attenuation, no event} for all samples j and
¢; #0# p;. We count (a) true positive when the prediction of
our model outcome and the ground truth match as

,=Wpilp;=ge=ci}l,

(b) false positive when the prediction of our model outcome is
¢; and does not match the ground truth,

bi=Wpjlpj #gu pj=cill,

and (c) false negative when the prediction does not match
the ground truth and the classification (e.g., ¢; = reflection,
pi = attenuation, ground truth = no event),

i =Wpilp; #gw pj #cill-

We finally define precision per class ¢; as ratio,

precison; = 2,/ (lpi +ﬁ>i),

and recall as

recall; = #p,/ (t])i +ﬁ’z‘) :

We average the scores over each class and report the results in
Table 2.

In Table 2, we observe that ML models trained on exper-
imental data achieve high macro average precision and recall
scores, respectively, since the individual scores of each class are
at 90% or higher. Recall scores for the third class (attenuation
events) tend to be lower due to low occurrence in the training
data. The results of the BiLSTM, which are only trained on
simulated data, are also shown in Table 2. We note a lower
precision score of 70%. The low resolution of reflection and
attenuation events and the absence of the noise contribution
in the emulated data limit the classification performance. An
example of the test set for the event detection and classifica-
tion is plotted in Fig. 4. The inset shows a comparison of the
ground truth and the ensemble classifier. The prediction of
the ensemble method is color-coded according to the classes.

The agreement is shown in green if the ML ensemble method
and the BiLSTM make the same prediction and red otherwise.
Specifically, disagreement between reflection classifications
can be observed, leading to a lower precision score. Overall, a
match of 98% can be achieved.

A. Event Assignment to Individual PON-ODN
Branches

After identifying and classifying events inside the ODN of a
PON, a key challenge that remains is assigning those events to
ODN branches of the drop section. Such an approach targets
resolving events on the accumulated OTDR trace and assign-
ing them to the individual or group of fiber branches behind
the PON power splitter. This section analyzes how such an
assignment can be performed by applying the PON-specific
system or infrastructure knowledge to the ML-supported
OTDR trace diagnostics.

Infrastructure deployment and network qualification
documentation: Today’s broadband access infrastructures
are carefully planned, and the deployment is documented,
including 2D or 3D visualization opportunities in maps of the
area. Further, before PON system equipment is installed in
an ODN, the infrastructure provider or operator performs a
network qualification. Part of such analysis is the measurement
and documentation of the loss, optical return loss, and fiber
distance of the various access points. The PON loss tester
can be employed to obtain the attenuation profile of the fiber
infrastructure, whereas OTDR units can be used to measure
the fiber distances of the branches. The result of this ODN
qualification is a fine granular representation of the infrastruc-
ture with a fiber distance uncertainty from OTDR units below
10 m [15]. If the documentation for the geographical-resolved
deployment planning and execution is combined with the net-
work qualification results, spatially referenced OTDR data can
be achieved, e.g., a 2D map of the deployment area, including
the OTDR trace and event information. In our analysis, we
assume that the network qualification remains true over the
lifetime of the PON ODN and that the documentation is
updated reliably after potential fiber repair or changes to the
infrastructure.

If we combine the ML-based OTDR event identification
and classification method with such documentation data, we
can allocate events identified and classified in the drop section
to groups of branches or individual branches depending upon
the ODN. The accuracy is mainly determined by the resolu-
tion of the OTDR unit employed in the ML-based OTDR
method, which typically is in the same order as the OTDR
units applied for the infrastructure qualification. Thus, the
overall method can assign events with a spatial resolution in
the order of 10 m. To visualize our vision, we have added to
our ensemble classifier results the knowledge about the fiber
length from a hypothetical deployment and qualification
documentation, i.e., conducting our own ODN qualification
measurements with a resolution better than 10 m. This allows
us to obtain an OTDR trace, as shown in Fig. 4, in which all
OTDR data points are categorized into one of the three event
classes (indicated with different colors), and events can be asso-
ciated with the splitter location or end of branches to single out
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Event classification of a single OTDR trace with assignment to PON branches. Each point is classified by the ensemble classifier as

(a) no event, (b) reflection, and (c) attenuation (for completeness). Misclassified events in the case that the prediction is different from the ground
truth have been marked in orange. Additionally, the agreement between the ensemble classifier and the BiLSTM is plotted in green and the

disagreement in red.

ODN fiber connections contributing to an event. This way, we
can reduce the search space of possible event or fault locations
within the ODN. If our approach is combined with the 2D
representation of the deployment area, events or faults can also
be located in a particular area of the infrastructure, allowing the
provider or operator to identify such locations in a significantly
shorter time and lower number of truck rolls.

An alternative approach to obtain information about the
propagation time or the estimated equivalent fiber length
for the various OLT-ONU links can come from the PON
MAC. At each ONU activation process, the OLT evaluates the
individual OLT-ONU RTT and assigns an equalization delay
(EgD). For example, in XGS-PONSs [16], the EqD is calculated
by the OLT to a single integer bit period accuracy concerning
the nominal upstream line rate of 2.5 Gbit/s, i.e., ~400 ps,
which is irrespective of the actual ONU upstream line rate.
Drifts in operation of the EqD of up to +/3.2 ns are tolerated
before applying an EqD correction to avoid too frequent
updates of the EqD for the ONUs. The EqD accuracy and
EqD drift determine our capability to identify individual
propagation times between the OLT-ONU (below 10 ns) and,
this way, the equivalent fiber length.

The OLT can estimate the fiber distance to each ONU based
on (a) the individual OLT-ONU round-trip time measure-
ment; (b) the actual response time of an ONU, which can be
obtained via the optical network unit management and control
channel; (c) the EqD; (d) a start time offset; and (e) a best-fit
value reflecting the range of refractive indices for the propaga-
tion speed in the fiber (refractive index variations can cause a
few ns timing error in the estimation). Overall, this method
can produce an estimate that is approximately +1% accurate
[16]. Thus, for an ODN of 20 km length, XGS-OLTs can
estimate the OLT-ONU distance with an accuracy of £200 m
only, which is mainly because of the insufficient knowledge
of the operating wavelength in the upstream direction and

the associated chromatic dispersion of the fiber sections.
Nevertheless, the RTT is very precisely known by the OLT, so
it is recommended in this case to apply the measured OTDR
traces in the time domain [s] rather than in the space domain
[m] for the event assignment. Such an approach becomes pos-
sible because of the high accuracy in OTDR units (assuming
precise knowledge of OTDR wavelength, high sampling reso-
lution down to 4 cm [15], and the ODN fiber type) between
the conversion of time and space domain.

The information of the individual OLT-ONU RTT can
be combined with the OTDR event analysis to single out
branches the same way as introduced above for the infra-
structure deployment data. As the OLT knows each ONU
via its ONU-ID, an additional mapping of the ONU to the
deployment data would be required if geographical conclusions
from OTDR event analysis are also targeted. Such a mapping
could be performed via ONU serial number reporting of cus-
tomers or field teams at equipment installations. The operator
or the OLT could directly connect the ONU serial number
from the database to the ONU-ID and, thus, the RTT to a
geo-referenced location, allowing for further insights and data
inspection.

5. CONCLUSION

We have introduced and demonstrated an ML-based OTDR
event detection and classification concept that, if combined
with PON infrastructure information, allows us to associate
these events with PON ODN branches. We evaluated different
ML algorithms and the usage of emulated OTDR-like traces
as training data. Our proof-of-concept shows a high precision
of 98% and a high recall of 95% using an ensemble classi-
fier on measured OTDR traces and a successful mapping to
ODN branches or groups of branches. For emulated data, we
achieved an average precision of 70% and an average recall of



91%. The simulation model requires higher resolution and
noise contribution to achieve higher accuracy.

Funding. Bundesministerium fiir Bildung und Forschung (16KIS1227,
16KIS1228, 16KIS1230).

Data availability. The measured OTDR trace data and the OTDR-like
simulation trace data are stored on the server mentioned in [17] and are freely
accessible.

REFERENCES

1. J. Hehmann, M. Straub, L. Jentsch, et al, “Remotely pow-
ered intelligent splitter monitor for fiber access networks,” in
European Conference on Optical Communication (ECOC) (2015),
paper Tu.1.5.4.

2. M. Straub, V. Huckstadt, M. Ulrich, et al., “Field trial of a system-
independent infrastructure monitoring system for access networks,”
in Optical Fiber Communication Conference (OFC) (2021),
paper M3F.3.

3. M. Straub, L. Jentsch, J. Hehmann, et al., “Remotely powered
inline OTDR unit with unique identification possibility of power
splitter branches for use in access network applications,” in
European Conference on Optical Communication (ECOC) (2018),
paper We2.68.

4. P. Urban, “Mitigation of the parallel-path effect for reliable monitor-
ing of a passive optical network using standard optical time domain
reflectometry,” J. Opt. Commun. Netw. 15, 776-782 (2023).

5. Diamond, “OLiD outlets,” https://www.diamond-fo.com/products/
product-single/olid-outlets/.

6. K. Abdelli, C. Tropschug, H. Griesser, et al., “A transformer-based
model for event recognition and characterization in passive optical
networks,” in European Conference on Optical Communication
(ECOC) (2023), paper We.D.7.4.

7. K. Abdelli, J. Y. Cho, F. Azendorf, et al., “Machine-learning-based
anomaly detection in optical fiber monitoring,” J. Opt. Commun.
Netw. 14, 365-375 (2022).

8. K. Abdelli, C. Tropschug, H. GrieBer, et al., “Branch identification in
passive optical networks using machine learning,” in Optical Fiber
Communication Conference (OFC) (2023), paper M2G.4.

9. M. Straub, T. Saier, J. Reber, et al., “Al-based OTDR event
detection, classification and assignment to ODN branches in
passive optical networks,” in European Conference on Optical
Communication (ECOC) (2023), paper We.C.5.2.

10. VPllinkConfigurator, https://www.vpiphotonics.com/Tools/
LinkConfigurator/.

11. T. Hastie, R. Tibshirani, and J. Friedman, “Random forests,” in
The Elements of Statistical Learning: Data Mining, Inference, and
Prediction (Springer, 2009), pp. 587-604.

12. Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF models for
sequence tagging,” arXiv, arXiv:1508.01991 (2015).

13. I. Goodfellow, Y. Bengio, and A. Courville, “Sequence model-
ing: recurrent and recursive nets,” in Deep Learning (MIT, 2016),
pp. 367-415.

14. C. D. Manning, P. Raghavan, and H. Schitze, “Evaluation in
information retrieval,” in Introduction to Information Retrieval
(Cambridge University, 2008), pp. 151-175.

15. Exfo datasheet for “MaxTester 730D PON/metro OTDR,” https://
www.exfo.com.

16. “10-gigabit-capable symmetric passive optical network (XGS-PON)
systems,” ITU-T Recommendation G.9807 (2016).

17. M. Straub, J. Reber, T. Saier, et al., “OTDR trace training data,”
Kaggle (2023), https://www.kaggle.com/datasets/johannesreber/
otdr-trace-training-data.

Michael Straub received his Dipl.-Ing. degree in electrical engineering from
the University of Stuttgart, Stuttgart, Germany. In 2001, he joined the former

Alcatel Research Center (now Nokia Bell Labs Stuttgart), and since then, he
has been active in the optical access networks domain in various fields.

Johannes Reber received his B.Sc. degree at KIT in 2021. He joined AIFB as
an assistant researcher in 2022. He is currently majoring in computer science
with a focus on Al at KIT. He further specializes in the application of RNNs
and CNNGs.

Tarek Saier received his M.Sc. in computer science from the University
of Freiburg. He is currently a Ph.D. candidate at institute AIFB, primarily
conducting research in the areas of natural language processing and digital
libraries. His research focus is on information extraction from scientific
publication texts.

Shi Li graduated in 2016 from the Technical University Berlin, Germany,
with honors as an M.Sc. in electrical engineering. After that, he worked for
4 years as a teaching and research assistant focusing on optical communi-
cations at the Chair of Communications at Kiel University. His research
interests include nonlinear Fourier transform, machine learning, and pho-
tonic neuromorphic computing. He joined VPIphotonics in 2020 and
currently works as a principal application engineer in the optical transmission
domain. He is also the solution owner for optical wireless communication.

Dmitry Khomchenko is the product manager of link engineering software at
VPIphotonics. He joined the company in 2000 and has spent over 20 years
modeling fiber optic communication systems. For the past 15 years, he has
been responsible for the management of optical network design software. He
has authored and co-authored several papers about optical amplifier modeling
and optical network design optimization.

Robert Borkowski received his M.Sc.Eng. and Ph.D. degrees from DTU
Fotonik—Department of Photonics Engineering, Technical University of
Denmark, and afterwards held a postdoctoral position with the same institu-
tion. He joined Alcatel-Lucent Bell Labs in Stuttgart, Germany, in 2015 and
subsequently moved to Nokia Bell Labs, Murray Hill, New Jersey, USA, in
2022. Dr. Borkowski is a member of the optical access team researching next-
generation passive optical network (PON) technologies. He has authored and
co-authored more than 90 peer-reviewed journal articles, conference papers,
and patent applications. He has also contributed to the ITU-T standardiza-
tion process and European projects CHRON and PICaboo. Dr. Borkowski
currently serves on the Technical Program Committee for the Optical Fiber
Communication (OFC) conference.

André Richter received his M.Sc. degree in electrical engineering from the
Georgia Institute of Technology, Atlanta, USA, in 1995, and his Dipl.-Ing.
and Dr.-Ing. degrees from the Technical University of Berlin, Germany, in
1997 and 2002, respectively, for novel work in modeling long haul fiber
optical communications. In 1998, he was a Research Fellow at the University
of Maryland, Baltimore County, USA. Since 1997, Dr. Richter has been with
the VPIphotonics Team. He has co-authored more than 140 publications,
including 2 book chapters. His research interests include modeling and design
aspects of optical communications, fiber optics, and integrated photonics and
developing professional software solutions addressing these fields. Dr. Richter
led international teams in application engineering, product management,
and R&D before being appointed General Manager in 2013. He is a senior
member of Optica and IEEE, is a member of VDE/ITG and SPIE, and has
served on several technical program committees of OFC, ACP, and IEEE
Summer Topicals.

Michael Firber is a deputy full professor at the Karlsruhe Institute of
Technology (KIT) and leads the Web Science research group with a team of
seven Ph.D. students. His research interests primarily lie in natural language
processing, machine learning, and knowledge representation. He aims to
develop Al methods that can extract information from text on a large scale,
model it as a knowledge graph, and recommend it along with explanations.
Dr. Firber has a track record of almost 100 scientific publications in top-tier

conferences and journals such as CIKM, ECML, EDBT, ISWC, NAACL,


https://doi.org/10.1364/JOCN.495718
https://www.diamond-fo.com/products/product-single/olid-outlets/
https://www.diamond-fo.com/products/product-single/olid-outlets/
https://www.diamond-fo.com/products/product-single/olid-outlets/
https://doi.org/10.1364/JOCN.451289
https://doi.org/10.1364/JOCN.451289
https://doi.org/10.1364/JOCN.451289
https://www.vpiphotonics.com/Tools/LinkConfigurator/
https://www.vpiphotonics.com/Tools/LinkConfigurator/
https://www.vpiphotonics.com/Tools/LinkConfigurator/
https://doi.org/10.48550/arxiv.1508.01991
https://www.exfo.com
https://www.exfo.com
https://www.exfo.com
https://www.kaggle.com/datasets/johannesreber/otdr-trace-training-data
https://www.kaggle.com/datasets/johannesreber/otdr-trace-training-data
https://www.kaggle.com/datasets/johannesreber/otdr-trace-training-data

C50 Vol. 16, No. 7 / July 2024 / Journal of Optical Communications and Networking

and SWJ. Additionally, he is actively involved as a project leader in various
national and international research projects.

Tobias Kifer reccived both his diploma degree in industrial engineering and
management (Dipl.-Wi.-Ing.) and his Ph.D. in applied informatics (Dr.-Ing.)
from the Karlsruhe Institute of Technology (KIT) in Karlsruhe, Germany.
During his career, he did research at the Digital Enterprise Research Institute
(DERI) at the National University of Ireland Galway, Ireland, and at the
Universidad de Chile in Santiago, Chile. He is currently working at KIT,
where he is a junior research group leader for knowledge graph-based artificial
intelligence (AI) systems. He is the co-author of more than 50 papers.

Research Article

René Bonk received his diploma degree in physics from the Technical
University of Braunschweig, Germany, and his Dr.-Ing. (Ph.D.) degree in
electrical engineering from the Karlsruhe Institute of Technology (KIT),
Germany, for work on all-optical signal processing and semiconductor optical
amplifiers. In 2012 he joined Alcatel-Lucent, Bell Laboratories, where he
focused on next-generation optical metro-access networks. He is currently
part of the Fixed Networks Leadership team at Nokia, Bell Laboratories,
based in Stuttgart, Germany, and coordinates the activities around the
“Converged Access System Research.” He also serves as an editor of the 50G-
PON PMD (G.9804.3) in ITU-T. Dr. Bonk has authored and co-authored
over 140 peer-reviewed journal and conference papers and has numerous
patents/patent applications in the field.



