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Abstract Citation recommendation describes the task

of recommending citations for a given text. Due to the

overload of published scientific works in recent years

on the one hand, and the need to cite the most appro-

priate publications when writing scientific texts on the

other hand, citation recommendation has emerged as

an important research topic. In recent years, several ap-

proaches and evaluation data sets have been presented.

However, to the best of our knowledge, no literature

survey has been conducted explicitly on citation recom-

mendation. In this article, we give a thorough introduc-

tion into automatic citation recommendation research.

We then present an overview of the approaches and

data sets for citation recommendation and identify dif-

ferences and commonalities using various dimensions.

Last but not least, we shed light on the evaluation meth-
ods, and outline general challenges in the evaluation

and how to meet them. We restrict ourselves to cita-

tion recommendation for scientific publications, as this

document type has been studied the most in this area.

However, many of the observations and discussions in-

cluded in this survey are also applicable to other types

of text, such as news articles and encyclopedic articles.

1 Introduction

Citing sources in text is essential in many scenarios.

Most prominently, citing has always been an integral

part of academic research. Scientific works need to con-

tain appropriate citations to other works for several rea-

sons [155]. Most notably, all claims written by the au-
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thor need to be backed up in order to ensure trans-

parency, reliability, and truthfulness. Secondly, men-

tions of methods and data sets and further important

domain-specific concepts need to be linked via refer-

ences in order to help the reader to properly under-

stand the text and to give attribution to the corre-

sponding publications and authors (see Table 1). How-

ever, citing properly has become increasingly difficult

due to the dramatically increasing number of scientific

publications published each year [25,163,58] (see also

Fig. 1). For instance, in the computer science domain

alone, more than 100,000 new papers are published ev-

ery year and three times more papers were published in

2010 than in 2000 [92]. A similar trend can be observed

in other disciplines [94]. For instance, in the medical

digital library database PubMed, the number of publi-

cations in 2014 (514k) was more than triple the amount

published in 1990 (137k) and more than 100 times the

amount published in 1950 (4k) [26]. Due to this phe-

nomenon of information overload in science in the form

of a “tsunami of publications,” citing appropriate publi-

cations has become an increasing challenge for scientific

writing.

As a consequence, approaches for citation recom-

mendation have been developed. Citation recommen-

dation refers to the task of recommending appropriate

citations for a text passage within a document. For in-

stance, given the phrase “and similarly, the emergence

of GANs has led to significant improvements in human

image synthesis” within a document, a citation rec-

ommendation system might insert two citations as fol-

lows: “and similarly, the emergence of GANs [1] has led

to significant improvements in human image synthesis

[2].” This would mean adding corresponding references

to (1) a publication introducing generative adversar-

ial networks (GANs), and (2) a publication backing up
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Fig. 1 Growth of scientific publications indexed in DBLP
from 1995 until 2018. Data source: http://dblp.org/

statistics/recordsindblp.

Table 1 Examples for in-text citations from Färber and
Sampath [111].

Citation type Example sentence

concept “To this end, SWRL [14] extends OWL-
DL and OWL-Lite with Horn clauses.”

claim “In the traditional hypertext Web,
browsing and searching are often seen
as the two dominant modes of interac-
tion (Olston & Chi, 2003).”

author “Gibson et al. [12] used hyperlink for
identifying communities.”

the statement concerning improvements in human im-

age synthesis. Added references in such a scenario need

to fit semantically to the context within the citing doc-

ument and may be required to meet further constraints

(e.g., concerning their recency).

Note that citation recommendation differs from pa-

per recommendation [15,142]: paper recommendation

aims to recommend documents to the user that are

worthwhile to read and to investigate (particularly, in

the context of a research topic). To that end, one or sev-

eral papers [165,66,4,138] or the user’s already clicked/

bookmarked/written documents [8,95] can, for instance,

be used for the recommendation. We can refer to [15,

11] for surveys on paper recommendation. Citation rec-

ommendation, by contrast, assists the user in substanti-

ating a given text passage (e.g., written claim or scien-

tific concept) within an input document by recommend-

ing publications that can be used as citations. The tex-

tual phrase to be backed up can vary in length – from

one word up to a paragraph – and is called citation con-

text. In some cases [71,103], the citation context needs

to be discovered before the actual citation recommen-

dation. While some existing works consider citation rec-

ommendation as a task of extending the set of known

references for a given paper [82,83,64], we consider ci-

tation recommendation purely as a task for substanti-

ating claims and concepts in the citation context. This

makes citation recommendation context-aware and very

challenging, because the concept of relevance is much

stricter than in ad hoc retrieval [144]. Consequently, ci-

tation recommendation approaches have been proposed

using additional information besides the citation con-

text for the recommendation, such as the author’s name

of the input document [48]. Evaluating a citation rec-

ommendation approach requires to verify if the recom-

mended papers are relevant as citations for given cita-

tion contexts. For scalability reasons, usually the cita-

tions in existing papers and their citation contexts are

used as ground truth (see Sec. 5.1).

Existing surveys focus only on related research ar-

eas of citation recommendation, but not explicitly on

citation recommendation itself. Among the most closely

related studies are the surveys on paper recommenda-

tion [15,11]. In these articles, the authors do not con-

sider recommender systems for given citation contexts.

Several surveys on other aspects of citation contexts

have also been published. Alvarez et al. [7] summarize

and discuss works on the identification of citation con-

texts, on the classification of each citation’s role (called

citation function), and on the classification of each ci-

tation’s “sentiment” (called citation polarity). Ding et

al. [44] focus on the content-based analyses of cita-

tion contexts, while White [164] considers primarily the

classification of citations into classes, the topics cov-

ered by citation contexts, and the motivation of citing.

Moreover, distantly related to this survey, surveys on

the analysis of citing behavior [24,150] and surveys on

works about the analysis of citation networks exist, for

instance, for the purpose of creating better measure-

ments of the scientific impact of researchers or com-

munities [159]. Dedicated approaches and data sets for

citation recommendation are not covered in all those

works, nor is there any analysis of citation recommenda-

tion evaluations and evaluation challenges. This makes

it necessary to consider citation recommendation sepa-

rately and to use task-specific dimensions for comparing

the approaches.

We make the following contributions in this survey:

1. We describe the process of citation recommenda-

tion, the scenarios in which it can be applied, as

well as the advantages it has in general.

2. We systematically compare citation recommenda-

tion to related tasks and research topics.

3. We outline the different approaches to citation rec-

ommendation published so far and compare them

by means of specifically introduced dimensions.

4. We give an overview of evaluation data sets and fur-

ther working data sets for citation recommendation

and show their limitations.

http://dblp.org/statistics/recordsindblp
http://dblp.org/statistics/recordsindblp


Citation Recommendation: Approaches and Datasets 3

5. We shed light on the evaluation methods used so far

for citation recommendation, we point out the chal-

lenges of evaluating citation recommendation ap-

proaches, and present guidelines for improving ci-

tation recommendation evaluations in the future.

6. We outline research directions concerning citations

and their recommendations.

Several reader groups can benefit from this survey:

non-experts can obtain an overview of citation recom-

mendation; the community of citation recommendation

researchers can use the survey as the basis for discus-

sions of critical points in approaches and evaluations,

as well as for getting suggestions for future research di-

rections (e.g., research topic suggestions for PhD can-

didates); and finally, the survey can assist developers in

choosing among the available approaches or data sets.

The rest of this article is structured as follows: in

Section 2, we introduce the field of citation recommen-

dation to the reader. In Section 3, we describe how we

collected publications presenting citation recommenda-

tion approaches. We propose classification dimensions

and compare the approaches by these dimensions. In

Section 4, we give an overview of evaluation data sets

and compare the data sets by corresponding dimen-

sions. Section 5 gives a systematic overview of the eval-

uation methods that have been applied so far and of the

challenges that emerge when evaluating citation recom-

mendation approaches. Section 6 is dedicated to poten-

tial future work. The survey closes in Section 7 with a

summary.

2 Citation Recommendation

2.1 Terminology

In the following, we define some important concepts of

citation recommendation, which we use throughout the

article. In order to have a generic task formalization, as

we prefer, we do not restrict ourselves to scientific pa-

pers as a document type, but consider text documents

in general.

The basic concept of citing is depicted in Fig. 2.

A citation is defined as a link between a citing doc-

ument and a cited document at a specific location in

the citing document. This location is called the cita-

tion marker (e.g., “[1]”) and the text fragment which

should be supported by the citation is called the ci-

tation context. During processing, the citation context

can be transformed into an abstract representation, such

as an embedding vector [48,21] or a translation model

[74,76]. This enables us to more accurately match the

information in the citation context with the informa-

also DBpedia [1] was used 
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Fig. 2 Visualization of a citation in a scientific paper.

tion provided in the “citable” documents (also called

candidate cited documents).

“References” and “citations” are often used inter-

changeably in the literature. However, we name in-text

references, given by citation markers, citations. Refer-

ences, in contrast, are listed in the reference section of

the citing document and describe links to other docu-

ments on a document level without context.

In the academic field, both the citing documents and

the cited documents are usually scientific papers. We

use the terms paper, publication, and work interchange-

ably in this article. The authors of scientific papers are

usually researchers. We then use researcher and sci-

entist interchangeably. Researchers who use a citation

recommendation system become users.

Citing documents and cited documents consist of

content and metadata. In the case of scientific papers,

the paper’s metadata typically consists of the title, the

author information, an abstract, and other information,

such as the venue in which the paper has been pub-

lished.

Different citation context lengths can be used for

citation recommendation. If only a fragment of an in-

put text document is used as citation context (e.g., a

sentence [69,74] or a window of 50 words), we call it lo-

cal citation recommendation or context-aware citation

recommendation. If no specific citation context, but in-

stead the whole input text document or the document’s

abstract is used for the recommendation (see, e.g., [144,

119,151,89]), we call it global citation recommendation

or non-context-aware citation recommendation (follow-

ing He et al. [72]). In the following sections, we will

primarily focus on local citation recommendation, since

only this variant targets the recommendation of papers

for backing up single concepts and claims in a text frag-

ment (i.e., assists the user in the actual citing process)

and has not been addressed in other surveys, to the best

of our knowledge.1

1 It should be noted that it is also possible to design global
context-aware citation recommendation approaches, i.e., ap-
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2.2 Scenarios, Advantages, and Caveats of Citation

Recommendation

In the “traditional” process of finding appropriate cita-

tions, the researcher needs to come up with candidate

publications for citing on her own. The candidate pa-

pers that can be cited are either already known by her,

are contained in a given document collection, or first

need to be discovered. For the last option, the scien-

tist typically uses widely used bibliographic databases,

such as Google Scholar,2 or domain-specific platforms

such as DBLP3 or PubMed.4 The search for candidate

papers to cite typically requires considerable time and

effort as well as skills: the right keywords for querying

need to be found, and the top n returned documents

need to be manually assessed with regards to their rele-

vance to the citing document and to the specific citation

contexts.

The idea of citation recommendation is to enhance

the citing process: The user provides the text she has

written (with or without initial citations) to the recom-

mender system. This system then presents to the user

for specific segments of the input text all publications

which were determined automatically as suitable cita-

tions. The user can investigate the recommendations in

more detail and approve or disapprove them. Follow-

ing this procedure, the tedious manual, separate search

in bibliographic databases and paper collections can be

considerably reduced (and maybe even skipped). The

user does not need to think of meaningful keywords for

searching papers any more. Last but not least, citing

may become less dependent on the (often very limited)

set of papers known to the current user.

We do not want to hide that citation recommenda-
tion can also entail problematic features if applied in-

adequately. Firstly, if citing becomes purely automated,

the role of citations might change (e.g., instead of crit-

icizing, citations might support a statement; see [155,

117,154] for citation function schemes). The trust in

citations might decrease, since machines (here: recom-

mender systems) might not engender as much trust as

experts who have dealt with the topic. We thus argue

that a human-in-the-loop is still needed for citation rec-

ommendation. Secondly, if the recommendation mod-

els are trained on a fixed publication data set, instead

proaches which recommend citations for specific contexts
(e.g., sentences) but which take the whole paper into account
(e.g., to ensure an even greater understanding of the context
or to diversify the recommendations). However, we are not
aware of any such approach being published (see also Sec-
tion 6 for potential future work).
2 http://scholar.google.com/
3 http://dblp.org/
4 http://www.ncbi.nlm.nih.gov/pubmed/

of removing citation biases, the recommender systems

could introduce additional biases towards specific pa-

pers. Therefore, it must be ensured that a sufficiently

large number of papers is indexed and that the new pa-

pers are indexed periodically. Caveats of citation rec-

ommendation are discussed in depth in Sec. 5.

Citation recommendation systems can be designed

for several user groups:

(1) Expert Setting. In this setting, a researcher

is familiar with her research area and is in the process

of writing an expert text, such as a scientific publica-

tion (e.g., after having developed a novel approach or

for conducting a survey in her research field). Recom-

mendations of citations can still be beneficial for her,

as such a user might still be unaware of publications

in their field in the light of the “tsunami of publica-

tions” common in all scientific fields nowadays [25,163,

58]. Citation recommendation systems might come up

with recommendations which were not in the focus of

the researcher if she cited in the traditional way, since

the system might be able to bridge language barriers

[87,153] and also find publications which use synonyms

or otherwise related concepts.

(2) Non-Expert Setting. We can think of several

non-expert user types for which citation recommenda-

tion can be beneficial:

– A researcher needs to write a scientific text on a

topic that is outside of her core research area and

expertise (e.g., generic research proposals [20] and

potential future work descriptions).

– A journalist in the science domain – e.g., authoring

texts for a popular science magazine – needs to write

an article on a certain scientific topic [130,124]. We

can assume that the journalist typically is not an

expert on the topic she needs to write about. Hav-

ing citations in the text helps to substantiate the

written facts and make the text more complete and

understandable.

– “Newcomers” in science, such as Masters students

and PhD students in their early years, are confronted

with the vast amount of citable publications and

typically do not know any or all of the relevant lit-

erature in the research field yet [71,174]. Getting

citations recommended helps not only students in

writing systematic and scientific texts, such as re-

search project proposals (exposés), but also their

mentors (e.g., professors).

In all these non-expert settings, the relevance of the

recommended citations is presumably not so much de-

termined by the timeliness of the publications, as in

the expert setting, but instead more by the general im-

portance and prominence of the publications. Thus, the

http://scholar.google.com/
http://dblp.org/
http://www.ncbi.nlm.nih.gov/pubmed/


Citation Recommendation: Approaches and Datasets 5

relevance function for finding the most appropriate ci-

tations might vary from setting to setting.

Besides the pure topical relevance of recommended

citations, also the fit from a social perspective might be

essential. In recent decades, the citing behavior of scien-

tists has been studied extensively in order to find good

measurements for the scientific impact of scientists and

their publications [24]. In this context, several biases in

citing have been considered. Most notably, the hypoth-

esis has been made that researchers tend to cite pub-

lications which they have written themselves or which

have been written by colleagues [78]. Another hypoth-

esis is that very prominent and highly cited works get

additional citations only due to their prominence and

visibility in the community (see, e.g., [164]). Citation

recommendation systems can help in reducing biases

by recommending citations which are the best fit for

the author, the citation context with its argumentation,

and the community.5 Section 5.2 discusses citing bias in

the context of citation recommendation in detail.

Overall, we can summarize the benefits of citation

recommendation as follows:

1. Finding suitable citations should become more effec-

tive. This is because the match between the query

(citation context) and the citable documents is more

sophisticated than via manual matching (e.g., also

considering synonyms, related topics, etc.). Further-

more, the recommender system typically covers a

much larger collection of known publications than

the set of documents known to the user.

2. Researchers are more (time-)efficient during the pro-

cess of citing, as the number and extent of manual

investigations (using bibliographic databases or own

document collections) are reduced, and because rec-

ommendations are returned immediately.

3. The search for publications which can be cited be-

comes easier and more user-friendly (“citing for ev-

eryone”). As a consequence, citing is no longer just

a “privilege” for experts, but potentially something

for almost anyone.

4. By establishing a formal relevance function dealing

with the issue of which papers are cited and what

characteristics they have, the process is no longer

left to chance. Hence, biases in citing behavior can

be minimized.

5. Ideally, citation recommendation systems only rec-

ommend citations for valid statements and existing

concepts, while unexaminable statements are not

cited. Hence, citation recommendation implies an

implicit fact checking process by showing sources to

the user which support the written statements.

5 However, please also note the caveats of citation recom-
mendation as outlined above and in Sec. 5.3.

6. Advanced citation recommendation systems can, in

addition, search for suitable, cite-worthy publica-

tions in other languages than the citing document

(cross-linguality). They can also recommend publi-

cations under the special consideration of topic evo-

lution over time, of current buzzwords, or in a per-

sonalized way, by incorporating user profiles.

2.3 Task Definition

In the following, we define local citation recommenda-

tion. By considering the whole document, abstract, or

title as citation context, this definition can also serve

as definition for global citation recommendation. The

general architecture of a context-aware citation recom-

mendation system is depicted in Fig. 3. State-of-the-

art citation recommendation approaches are supervised

learning approaches. Thus, we can distinguish between

an offline step (or training phase in machine learning

setups), in which a recommendation model is learned

based on a collection of documents, and an online step

(or testing/application phase), in which the recommen-

dation model is applied to a new incoming text doc-

ument. Note, however, that unsupervised learning ap-

proaches and rule-based approaches are also possible

(although, to date, to the best of our knowledge, none

such have been proposed). In that case, the learning

phase in the offline step is eliminated and a given model

(e.g., set of rules) can be directly applied (see Fig. 3).

In the following, we give an overview of the steps in

case of supervised learning (using the symbols summa-

rized in Table 2). Note that existing citation recommen-

dation approaches use, to the best of our knowledge,

content-based filtering techniques and are not based on

other recommendation techniques, such as collaborative

filtering or hybrid models. It is therefore not surprising

that the approaches are mostly not personalized6 (i.e.,

not incorporating user profiles). Hence, our task formal-

ization does not consider personalization.

2.3.1 Offline Step

Input Input is a set of documents D = {d1, ..., dn},
which we call in the following the citing documents,

with citations and references.7

6 Exceptions are [174,101], which also use the citing paper’s
author information besides the content.
7 It should be noted that citation recommendation can be

defined both on a citation context-level and on a document
level. We here consider the task on a document level, because
this enables us to have a more generic definition.
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Table 2 Symbols used for formalizing citation recommenda-
tion, grouped by the offline step and the online step.

Symbol Description

D = {d1, ..., di, ..., dn} set of citing documents in the
offline step

R = {r1, ..., rm, ..., rM} references of all citing docu-
ments D

Ci = {ci1, ..., cij , ..., ciN} citation contexts from docu-
ment di

Zi = {zi1, ..., zij , ..., ziN} abstract citation contexts
from document di

Z set of all abstract citation
contexts of D

f mapping function
g mapping function

d input document in the online
step

Rd references of document d
Cd = {cd1 , ...cdk, ..., cdK} potential citation contexts of

document d
Zd = {zd1 , ..., zdk, ..., zdK} abstract representations of

potential citation contexts of
document d

Rzd
k

set of papers recommended
for citation

d′ input document d enriched
by recommended citations

Processing The processing of the input texts consists

of the following steps:

(1) Reference Extraction. All references from

the reference sections of all citing documents are ex-

tracted and stored in a global index R.

(2) Citation Context Extraction & Represen-

tation. First, all citation contexts cij ∈ Ci from each

citing document di need to be extracted. Then, these

citation contexts are transformed into the desired repre-

sentation form (e.g., embedding vectors, bag-of-entities,

etc.) zij :

∀di ∈ D ∀cij ∈ Ci : cij → zij

(3) Model Learning. Given the output of the pre-

vious steps (the citing documents D, the cited docu-

ments R, and the abstract citation contexts Z), we can

learn a mapping function f which maps each citation

context representation zij and its citing document di to

a reference (cited document) rm ∈ R as given by the

training data:

∀zij ∈ Z ∀di ∈ D f : (zij , di)→ rm

Note that some approaches to citation recommenda-

tion might not use any other information from the cit-

ing documents besides the citation contexts, eliminat-

ing thus di as argument in the mapping function. In

those cases, only the representation of the citation con-

text zij is decisive (e.g., representation of a concept).

The mapping function f and the whole task can be

formulated as a binary classification task (as also pre-

sented in [134]), especially in order to employ statistical

models. Then, each citable document rm is considered

as a class and the task is to determine if (zij , di) should

be in class rm:

g(zij , di, rm)→ [0, 1]

[0, 1] is the probability of citing rm given zij and di.

As mentioned above, di might be optional for some ap-

proaches. In reality, g is often learned based on machine

learning. However, one can also think of other ways to

create g (e.g., rule-based approaches).

Output Output is the function g, given the abstract

citation contexts Z, the citing documents D, and the

cited documents R.

2.3.2 Online Step

Input Input is a text document d without citations and

references (or only a few ones).

Processing Processing the document d consists of the

following steps:

(1) Reference Extraction (optional): If d al-

ready contains citations and a reference section, the ref-

erences Rd from d can be extracted and the correspond-

ing representations can be retrieved from the database

of cited papers R. These representations can be uti-

lized for improving the citation recommendation within

Model Application, e.g., for a better topical coherence

among existing and recommended citations [91].

(2) Citation Context Extraction & Represen-
tation: First, if the existing citations in document d are

to be used, the task is to extract and represent them

in the same way as in the Offline Step. Then, all po-

tential citation contexts cdk ∈ Cd – i.e., contexts in d,

which are judged as suitable for having a citation –

are extracted from d and transformed into the same

abstract representation form zdk as used in the Model

Learning : ∀cdk ∈ Cd : cdk → zdk . Note that, some-

times, an additional filtering step filters out all potential

citation contexts which are not worth considering.

(3) Model Application: Here, the mapping func-

tion g, learned during the training, is applied on the

potential citation context representations zdk of docu-

ment d for recommending citations:

∀zdk ∈ Zd Rzd
k

= {rm | rm ∈ R ∧ g(zdk , d, rm) ≥ θ}

R is thereby the global index of “citable” papers (gath-

ered during the offline step). Rzd
k

is the set of recom-

mended cited papers. These papers were classified as

cited with a likelihood of at least θ.
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Fig. 3 Architecture of a prototypical citation recommendation system.

(4) Text Enrichment Given the document d and

the set of recommendations Rzd
k

for each citation con-

text representation zdk , the running text of document

d gets enriched by the recommended citations and the

reference section of d gets enriched by the correspond-

ing references.

Output Output is the annotated document d′.

2.4 Related Research Fields

2.4.1 Non-Scholarly Citation Recommendation

Also, outside academia, there is a demand for citing

written knowledge. We can mention three kinds of doc-

uments, which often appear in such scenarios as cit-

ing documents: encyclopedic articles, news articles, and

patents. Citation recommendation approaches developed

for the scholarly field can in principle also be applied to

such fields outside academia. Note, however, that each

of the use cases might bring additional requirements

and challenges. The scholarly domain is characterized

by the use of a particular vocabulary, thus making it

hard to apply models (e.g., embeddings) that were pre-

trained on other domains (e.g., news). In contrast, doc-

uments in the non-scholarly field, such as news arti-

cles, often do not have a (dense) citation network. This

might make it harder to build metadata-based repre-

sentations of the documents and to evaluate the recom-

mender systems, because no co-citation network can be

used for the evaluation (see the fuzzy evaluation met-

rics in Sec. 5.1). In the following, we outline specifically

developed approaches for non-scholarly citation recom-

mendation.

Encyclopedic articles as citing documents: The

English Wikipedia is nowadays already very rich and

quite complete in the number of articles included, but

still lacks citations in the range of (at least) hundreds

of thousands [80]. This lack of citations diminishes the

potential of Wikipedia to be a reliable source of infor-

mation. Since in Wikipedia mainly news articles are

cited [56], several approaches have focused on devel-

oping methods for recommending news citations for

Wikipedia [112,113,56,55].

News articles as citing documents: Peng et

al. [124] approach the task of citation recommendation

for news articles. They use a combination of existing

implicit and explicit citation context representations as

well as 200 preselected candidate articles instead of hun-

dreds of thousands per citation context.

Patents as citing documents: Authors of patents

need to reference other patents in order to show the con-

text in which the patent is embedded. Thus, approaches

for patent citation recommendation have been proposed

[109].
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Table 3 Overview of tools for extracting in-text citations (i.e., references’ metadata and citations’ positions in the text) from
scientific publications, sorted by publication year.

Tool Approach Input
format

Output
format

Extracts citation
contexts (citation
context length)

Extracts citing
paper’s abstract

CERMINE [158] CRF pdf xml yes (300 words) yes

ParsCit [39] CRF txt xml, txt yes (200 words) no

GROBID [104,105] CRF pdf xml no yes

PDFX [38] rule-based pdf xml yes (300 words) yes

Crossref pdf-extractor [40] rule-based pdf xml, bib no no

IceCite [12] rule-based pdf tsv, xml, json no yes

Science Parse [6] CRF pdf json yes yes

2.4.2 Scholarly Data Recommendation

Scientists are not only confronted with an information

overload regarding publications, but also regarding var-

ious other items, such as books, venues, and data sets.

As a consequence, these items can also be recommended

appropriately in order to assist the scientist in her work.

Among others, approaches have been developed for rec-

ommending books [116], scientific events [90], venues

[173] and reviewers [97] for given papers, patents [122],

scientific data sets [139], potentially identical texts (by

that means identifying plagiarism) [63], and newly pub-

lished papers, via notifying functions [50].

2.4.3 Related Citation-based Tasks

In the following, we describe some citation-based tasks

that are either strongly related to or an integral part of

citation recommendation.

Citation network analysis Citation network analysis de-

scribes the task of analyzing the references between doc-

uments in order to make statements about the scien-

tific landscape and to investigate quantitatively scien-

tific publishing. Among others, citation network anal-

ysis has been performed to determine communities of

researchers [172,43], to find experts in a domain [68],

to know which researchers or publications have been or

will become important, and to obtain trends in what

is published over time [70]. Note that citation network

analysis operates on the document level and generally

does not consider the document’s contents.

Citation context detection and extraction Each citation

is textually embedded in a citation context. The citation

context can vary in length, ranging typically from a part

of a sentence to many sentences. As shown in several

analyses [7,3], precisely determining the borders of the

citation context is non-trivial. This is because several

citations might appear in the same sentence and be-

cause citations can have different roles. While in some

cases a claim made by the author needs to be backed

up, in other cases a single concept (e.g., method, data

set, or other domain-specific entity) needs to be ref-

erenced by a corresponding publication [111]. In con-

clusion, there seems to be no consistent single optimal

citation context length [7,133,132]. Different citation

context lengths have been used for citation recommen-

dation (see Table 5).

To extract citation contexts and references from pa-

pers, specific approaches have been developed [156,157].

These approaches were developed for PDFs with a paper-

typical layout. They are not only capable of extracting

a paper’s metadata, such as title, author information,

and abstract, in a structured format, but also the refer-

ences from the reference section, as well as linking the
citation markers in the text to the corresponding refer-

ences. Table 3 provides an overview of the existing pub-

licly available implementations for extracting in-text ci-

tations from scientific papers. Note that we limited our-

selves to implementations which were designed for sci-

entific papers as input and which are still deployable;

other PDF extraction tools are not considered by us

(see [12,156,157] for an overview of further PDF-to-text

tools). Furthermore, we excluded tools, such as Neural

ParsCit [128], which do not output the positions of the

citations in the text. Given these tools, we can observe

the following: (1) All underlying approaches are a rule

engine or a conditional random field. (2) Several tools

(e.g., ParsCit) have the additional feature that they can

extract not only the fulltext from the PDF documents,

but also a citation context around the found citation

markers. (3) Several tools (e.g., ParsCit) require plain-

text files as input. Transforming PDF to plaintext is,

however, an additional burden and leads to noise in the

data. (4) The tools differ considerably in the process-



Citation Recommendation: Approaches and Datasets 9

ing time needed for processing PDF files [12]. ParsCit

and GROBID, which have been used most frequently

by researchers, to our knowledge, are among the fastest.

Citation context characterization Citations can have dif-

ferent roles, i.e., citations are used for varying purposes.

These reasons are also called citation functions. The ci-

tation function can be determined – to some degree au-

tomatically – by analyzing the citation context and by

extracting features [155,117,154]. Similar tasks to the

citation function determination are the polarity deter-

mination (i.e., if the author speaks in a positive, neu-

tral, or negative way about the cited paper) [1,61] and

the determination of the citation importance [160,36].

The general typical structure of publications has

been studied and brought into a schema, such as the IM-

RaD structure [141], standing for introduction, meth-

ods, results, and discussion. In [19], for instance, the

authors find out that the average number of citations

among the same sections in article texts is invariant

across all considered journals, with the introduction and

discussion accounting for most of the citations. Further-

more, apparently the age of cited papers varies by sec-

tion, with references to older papers being found in the

methods section and citations to more recent papers in

the discussion. Although such insights have not been

used for development of citation recommendation ap-

proaches yet, we believe that they can be beneficial for

better approximating real human citing behavior.

Citation-based document summarization Citation-based

document summarization is based on the idea that the

citation contexts within the citing papers are written

very carefully by the authors and that they reveal note-

worthy aspects of the cited papers. Thus, by collecting

all citation contexts and grouping them by cited papers,

summaries and opinions about the cited papers can be

obtained, opening the door for citation-based automatic

survey generation and automatic related work section

generation [2,49,114].

Citation matching and modeling Citation matching [123]

deals with the research challenge of finding identical ci-

tations in different documents in order to build a co-

herent citation network, i.e., a global index of citations

for a document collection.

Representing the metadata of both citing and cited

papers in a structured way is essential for any citation-

based task. Recently, several ontologies, such as FaBiO

and CiTO [125], have been proposed for this purpose.

Besides the metadata of papers, further relations and

concepts can be modeled ontologically in order to facil-

itate transparency and advances in research [126].

3 Comparison of Citation Recommendation

Approaches

Approaches to (local and global) citation recommenda-

tion have been published over the years, using diverse

methods, and proposing many variations of the citation

recommendation task, such as a recommendation across

languages [153] or using specific metadata about the in-

put text [134,48]. However, no overview and comparison

of these approaches has been presented in the literature

so far. In the following, we give such an overview.

3.1 Corpus Creation

Following a similar procedure as in [15], we collect the

papers for our comparison as follows:

1. On May 3, 2019, we searched in DBLP for papers

containing “citation” and “rec*” in the title. This

resulted in a set of 179 papers. We read those pa-

pers and manually classified each of them whether

they present an approach to (local or global) cita-

tion recommendation or not.

2. In a further step, we also investigated all papers

referenced by the so-far given relevant papers, and

the ones that refer to these so-far given papers, and

classify them as relevant or not.

3. To avoid missing any papers, we used Google Scholar

as an academic search engine with the query key-

words “citation recommendation” and “cite recom-

mend,” as well as the Google Scholar profiles from

the authors of the so-far relevant papers. Based on

that, we added a few more relevant papers to our

corpus.8

Overall, 51 papers propose a novel, either global or local

citation recommendation approach (see Table 4). Out

of these, 17 present local citation recommendation ap-

proaches, that is, approaches that use a specific citation

context within the input document (see Sec. 2.1 for the

distinction between local and global citation recommen-

dation). This means that only 33.3% of the approaches

denoted by the corresponding authors as citation rec-

ommendation approaches are actually designed for us-

ing citation contexts as input and are therefore truly

citation recommendation approaches (see Sec. 2.1).

Note that we consider only papers presenting ap-

proaches to citation recommendation, and not those on

data analysis (e.g., citation graph analysis). We also do

not consider papers presenting approaches for recom-

mending papers that do not use any text as the basis

8 [134,100] are papers which are not indexed in DBLP, but
which can be found on Google Scholar or Semantic Scholar.
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Table 4 Approaches to global and local citation recommen-
dation (CR).

Reference Venue Local CR

McNee et al. [110] CSCW’02
Strohman et al. [144] SIGIR’07
Nallapati et al. [119] KDD’08
Tang et al. [151] PAKDD’09
He et al. [72] WWW’10 X
Kataria et al. [89] AAAI’10 X
Bethard et al. [20] CIKM’10
He et al. [71] WSDM’11 X
Lu et al. [107] CIKM’11
Wu et al. [167] FSKD’12
He et al. [69] SPIRE’12 X
Huang et al. [74] CIKM’12 X
Rokach et al. [134] LSDS-IR’13 X
Liu et al. [101] AIRS’13 X
Jiang et al. [84] TCDL Bulletin’13
Zarrinkalam et al. [175] Program’13
Duma et al. [45] ACL’14 X
Livne et al. [103] SIGIR’14 X
Tang et al. [153] SIGIR’14 X
Ren et al. [131] KDD’14
Liu et al. [99] JCDL’14
Liu et al. [98] CIKM’14
Jiang et al. [85] Web-KR’14
Huang et al. [75] WCMG’15 X
Chakraborty et al. [35] ICDE’15
Hsiao et al. [73] MDM’15
Gao et al. [60] FSKD’15
Lu et al. [106] APWeb’15
Jiang et al. [86] CIKM’15
Liu et al. [100] iConf’16
Duma et al. [47] LREC’16
Duma et al. [46] D-Lib’16
Yin et al. [174] APWeb’17 X
Ebesu et al. [48] SIGIR’17 X
Guo et al. [65] IEEE’17
Cai et al. [29] AAAI’18
Bhagavatula et al. [21] NAACL’18
Kobayashi et al. [91] JCDL’18 X
Jiang et al. [87] JCDL’18
Han et al. [67] ACL’18 X
Jiang et al. [88] SIGIR’18
Zhang et al. [176] ISMIS’18
Cai et al. [28] IEEE TLLNS’18
Yang et al. [171] JIFS’18
Dai et al. [41] JAIHC’18
Yang et al. [170] IEEE Access’18 X
Mu et al. [118] IEEE Access’18
Jeong et al. [81] arXiv’19 X
Yang et al. [169] IEEE Access’19
Dai et al. [42] IEEE Access’19
Cai et al. [30] IEEE Access’19

for the recommendation, but instead use other informa-

tion, such as the papers’ metadata.

0

20

40

60

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

# local CR approaches # global CR approaches

accum. # local CR approaches accum. # global CR approaches

accum. local+global CR appr.

Fig. 4 Frequencies of citation recommendation (CR) ap-
proaches by publication year.

3.2 Corpus Characteristics

Table 4 lists all 51 papers on citation recommendation,

together with the papers’ venues and an indication of

whether the described approach targets local or global

citation recommendation. We can point out the follow-

ing findings regarding the evolution of these approaches

over time:

1. We can observe that approaches to citation rec-

ommendation have been published over the last 17

years (see Fig. 4). The task of global citation recom-

mendation has attracted the interest of researchers

at an earlier stage than local citation recommen-

dation (first publication year 2002 [110] vs. 2010

[72]). Both the number of approaches to global cita-

tion recommendation and local citation recommen-

dation has increased continuously. Overall, more ap-

proaches to global citation recommendation system

have been published than approaches to local cita-
tion recommendation. However, note that the most

recent publications on global citation recommenda-

tion have been published in very short time intervals

at similar or same venues from partially identical

authors (see Table 4).

2. Some precursor works on the general task of ana-

lyzing and predicting links between documents [37]

have been published since 2000, while global citation

recommendation has been targeted by researchers

since 2002. Among others, there might be two major

aspects that can explain the emergence of citation

recommendation approaches at that time. Firstly,

the number of papers published per year has in-

creased exponentially. It became common in the 2000s

to publish and to read publications online on the

Web. Secondly, citations have become dispropor-

tionately more common over the years, that is, the

number of citations has increased faster than the

number of publications. Comparing the five-year pe-

riods 1999/2003 and 2004/2008 in [121], the number
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Fig. 5 Classification of citation recommendation approaches based on their set-up. The approaches are classified as follows:
A: [110,131,85,86,73,35,60,106,65,21,87,88,29,28,171,41,118,169,30]: B: [20]; C: [175]; D: [144,119,151,167,84,98,100,47,46,
176,42,107,99]; E: [72,71,74,134,101,45,153,75,174,48,170,81]; F: [69,103,91,67,89] The numbers correspond to the references
in the reference section.

of publications increased by 33%, while citations in-

creased by 55%.

3. Before the content-based (local and global) cita-

tion recommendation approaches – as considered in

this survey –, several systems had already been pro-

posed that use purely the citation graph as basis for

the recommendation. This “prehistory” of content-

based citation recommendation is explainable by the

fact that quantitative science studies such as biblio-

metrics have a long history, and were already quite

established in the 2000s.

4. Having an appropriate and large collection of scien-

tific papers as evaluation and training data is cru-

cial and not easy to obtain, since – especially in the

past – papers were often “hidden” behind paywalls

of publishers. Therefore, it is not very surprising

that several approaches [20,86,21,87] consider only

abstracts as citing documents instead of the papers’

content. Citation recommendation then turns into

reference recommendation for abstract texts.

5. Citation recommendation is located in the intersec-

tion of the research areas information retrieval, dig-

ital libraries, natural language processing, and ma-

chine learning. This is also reflected in the venues in

which approaches to citation recommendation have

been presented. Considering both global and local

citation recommendation, SIGIR, IEEE Access, CIKM,

and JCDL have been chosen most frequently as venues

(5 times SIGIR, 5 times IEEE Access, 5 times CIKM,

3 times JCDL; together accounting for 35% of all pa-

pers). Particularly, IEEE Access has become pop-

ular as a venue for publishing citation recommen-

dation approaches by a few researches in 2018 and

2019. Note that this journal’s reviewing and publica-

tion process is designed to be very tight (one review

round takes 7 days) and that IEEE has an article

processing charge. Our paper corpus also contains a

few publications from medium-ranked conferences,

such as AIRS [101]. It became apparent that these

papers provide less comprehensive evaluations, but

relatively high evaluation results (see the evaluation

metrics paragraph in Section 3.3). Due to missing

baselines, these results need to be taken with care.

6. Considering purely local citation recommendation,

SIGIR (3 times) and ACL (2 times) occur most fre-

quently as venue. The remaining venues occur only

once.

Big picture. In Fig. 5, we present visually a “big

picture” of the different settings in all citation rec-

ommendation approaches. We thereby differentiate be-

tween what data is used from the citing documents (ei-

ther only metadata (incl. abstract), or metadata plus

content, or metadata plus specific citation contexts),

and what data is used from the cited documents (ei-

ther only metadata, or metadata plus content). Note

that approaches using the metadata or the content of

the citing documents make up the group of global ci-

tation recommendation approaches, while approaches

using specific citation contexts target local citation rec-

ommendation. Note also that approaches using only the

metadata of the citing documents can be regarded as

targeting both the expert setting and the non-expert

setting (see Section 2.2), while the other approaches

are designed primarily for the expert setting. The pub-

lications that propose the approaches sometimes do not

point out in detail what data is used (e.g., whether the

author information of the citing papers is also used),

which makes a valid comparison infeasible. Thus, this

“big picture” figure tries to provide a clear picture of

what has been pursued so far. Notable, for instance, is

that 23.5% (12 out of 51) of all approaches use cita-

tion contexts (less than the whole content) of the citing

documents and only the metadata of the cited docu-

ments (see class E). In contrast, we can find only one

approach that uses the whole content of the citing doc-

uments and only the metadata of the cited documents
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Fig. 6 Citations between papers presenting citation recom-
mendation approaches. Local citation recommendation ap-
proaches are highlighted in blue.

(see class C). We can mention two potential reasons

for this fact. Firstly, it can be difficult to obtain the

publications’ full texts (due to, among other reasons,

limited APIs and copyright issues). Secondly, operat-

ing only with papers’ metadata is also easier from a

technical perspective.

Citation relationships. Fig. 6 shows the citation-

relationships between papers with citation recommen-

dation approaches. The papers are thereby ordered from

left to right by publishing year. It is eye-catching that

there is no continuous citing behavior along the tem-

poral dimension, i.e., a paper in our set does not nec-

essarily cite preceeding papers in our set. However, in

some cases we can explain this by the fact that publica-

tions were published within short time intervals. Conse-

quently, the authors might not have been aware of other

approaches which had either been published very re-

cently or had not yet been published. Nevertheless, we

can observe that authors of citation recommendation

approaches do omit references to other citation recom-

mendation approaches.

3.3 Comparison of Local Citation Recommendation

Approaches

When comparing citation recommendation approaches,

it is important to differentiate between approaches to

local citation recommendation (making recommenda-

tions based on a small text fragment) and approaches

to global citation recommendation. To understand that,

consider a scenario in which a text document with 20

citation markers is given. In case of local citation recom-

mendation, it is not uncommon to provide, for instance,
three recommendations per citation context. However,

a global citation recommendation system would pro-

vide only a list of 60 recommendations without indica-

tions where to insert the corresponding citation mark-

ers. In our mind, it is not reasonable to call this process

context-aware citation recommendation and to evalu-

ate the list of 60 recommendations in the same way

as the 20 lists with 3 recommendations, since citations

are meant to back up single statements and concepts

on a clause level, i.e., being suitable only for specific

contexts. Note also that global recommendation ap-

proaches in the context of paper recommendation are

covered by existing surveys (see Introduction). This sur-

vey, in contrast, focuses on context-awareness, which, to

date, has not yet been considered systematically. Thus,

in this subsection, we compare only the 17 approaches

to local citation recommendation.

In order to characterize and distinguish the different

approaches from each other, we introduce the following

dimensions:
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1. What is the underlying approach and to which data

mining technique is it associated?

2. What information is used for the user modeling, if

any?

3. Is the set of candidate papers prefiltered before the

recommendation?

4. What is used as the citation context (e.g., 1 sentence

or 50 words before and after the citation marker)?

5. Is the citation context pre-specified in the evalua-

tion or do cite-worthy contexts first need to be de-

termined by the algorithm?

6. Is the content of the cited papers also needed (lim-

iting the evaluation to corresponding data sets)?

7. Which evaluation data set is used (e.g., CiteSeerX

or own data set)?

8. From which domain are the papers used in the eval-

uation (e.g., computer science)?

9. What are the used evaluation metrics?

Table 5 shows the classification of the approaches ac-

cording to these dimensions. While in the following we

point out the main findings per dimension, note that

we also provide a description of the single approaches

and their characteristics in an online semantic wiki.9

1. Approach: A variety of methods have been de-

veloped for local citation recommendation. We can

group them into the following four groups:

(a) Hand-crafted feature based models [71,134,

101,45,103]. All approaches in this group are

based on features that were hand-crafted by the

developers. Text similarity scores obtained be-

tween the citation context and the candidate

papers are examples of text-based features. Re-

markably, all features used for the approaches

are kept comparably simple. Moreover, the ap-

proaches do not use additional external data sources,

but rather statistics derived from the paper col-

lection itself (e.g., citation count and text simi-

larity). Relatively basic techniques used for the

ranking of citations for the purpose of citation

recommendation (e.g., logistic regression and lin-

ear SVM [101], or merely the cosine similarity

of TF-IDF vectors [45]) seem to lead to already

noteworthy evaluation results and, thus, can serve

as strong baselines for the evaluations of other

systems. Among the most complex presented meth-

ods are an ensemble of decision trees [71] and

gradient boosted regression trees [103]. Note, how-

ever, that their superiority compared to simpler

models is hard to judge due to differing evalua-

tion settings, such as data sets and metrics.

9 http://wiki.citation-recommendation.org.

In recent years, no novel approaches of this group

have been published any more (latest one from

2014), likely due to the fact that (1) the obvious

features have already been used and evaluated,

and (2) recent approaches (e.g., neural networks)

seem to outperform the hand-crafted feature-

based models. Nevertheless, hand-crafted feature

based models provide the following advantages:

1. Scalability: Since both the computation of the

features and the used classifier/regression model

are kept rather simple, the citation recommenda-

tion approaches become very scalable and fast.

2. Explainability: The described techniques are

particularly beneficial when it comes to getting

to know which features are most indicative for

recommending appropriate citations. 3. Small data:

The models do not require huge data sets for

training, but may already work well for small

data sets (e.g., a few thousand documents). Ex-

isting approaches in this group use mainly lexical

features and other bibliometrics-based features

(e.g., citation count). Hand-crafted features fo-

cusing on the semantics and pragmatics of the

citation contexts and of the candidate cited doc-

uments, are missing. In the future, one can envi-

sion a scenario in which claims or argumentation

structures are extracted from the citation con-

texts and compared with the claims/argumen-

tation structures from the citable documents.

(b) Topic modeling [72,89]. Topic modeling is a

way of representing text (here: candidate papers

and citation contexts) by means of abstract top-

ics, and thereby exploiting the latent semantic

structure of texts. Topic modeling became pop-

ular, among others, after the publication of the

LDA approach by Blei et al. in 2002 and was ap-

plied to local citation recommendation in 2010

[72,89]. Using topic modeling in the context of

citation recommendation means to adapt default

topic modeling approaches, which work purely

on plain text documents, in such a way that

they can deal with both texts and citations. To

this end, He et al. [72] use a probabilistic model

based on Gleason’s Theorem, while Kataria et

al. [89] propose the LDA-variations Link-LDA

and Link-PLSA-LDA.

Note that topic modeling per se is computation-

ally rather expensive and may require more re-

sources than approaches of the group (a). More-

over, conceptually it might be designed rather

for longer texts, and, thus, more suitable for global

citation recommendation (where it has been ap-

plied in [151,119]). In the series of citation rec-

http://wiki.citation-recommendation.org
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ommendation approaches, topic modeling has been

applied within a relatively short time interval

(2010 only for local citation recommendation;

2008 and 2009 in case of global citation recom-

mendation) and has been replaced first by ma-

chine translation models (group (c)) and later by

neural network-based approaches (group (d)).

(c) Machine translation [69,74]. The authors of

[69,74] apply the concept of machine transla-

tion to local citation recommendation. These ap-

proaches had been published also within a short

time frame, namely only in 2012. Using machine

translation might appear surprising at first. How-

ever, the developed approaches do not translate

words from one language into another, but merely

“translate” the citation context into the cited

document (written in the same language, but

maybe with a partially different vocabulary). In

this way, the vocabulary mismatch problem is

avoided. The first published approach using ma-

chine translation for citation recommendation

was designed for global citation recommendation

[107]. Here, the words in the citing document

are translated to the words in the cited docu-

ment. This requires the cited documents’ con-

tent to be available. Approaches to local citation

recommendation follow: In [69], the translation

model uses several positions in the citable doc-

ument for translations. However, this makes the

approach computationally very expensive. The

last approach in this group [74] translates the

citing document merely into the identifiers of the

cited documents and does not use the cited doc-

uments’ content any more. By doing that, the

authors obtain surprisingly high evaluation re-

sults. Note that machine translation is a statis-

tical approach and requires a large training data

set. However, in the published papers and their

evaluations, rather small data sets (e.g., 3,000

and 14,000 documents in [74] and 30,000 docu-

ments in [69]) are used. Moreover, high thresh-

olds for the translation probability may be set to

make the machine translation approach feasible

[74].

(d) Neural networks [153,75,174,48,91,67]. This

group contains not only many approaches to lo-

cal citation recommendation (6 out of 17, that is,

35%), but also the most recent ones: here, papers

have been published since 2014. Due to the large

field of neural network research in general, the

architectures proposed here also vary consider-

ably. Although there are also relatively generic

neural network architectures applied [174,153],

we can observe a tendency in increasing com-

plexity of the approaches. Approaches are ei-

ther specifically designed for texts with citations

(e.g., [48,91]) or consider texts with citations as

a special case of hyperlinked documents [67]. In

the first subgroup are approaches using convo-

lutional neural networks [48] and special atten-

tion mechanisms, such as for authors [48]. In the

latter subgroup is an approach which uses two

vector representations for each paper. Note that

the approaches in this approach group do not in-

corporate any user model information, but work

purely on the sequence of words. An exception is

[48] which exploits the citing document’s author

information.

When it comes to deciding whether neural net-

works should be used in a productive system,

one should note that neural networks need to

be trained on large data sets. In recent years,

large paper collections have been published (see

Sec. 4). However, also the infrastructure, such as

GPUs, needs to be available. Moreover, consider-

able approximations need to be applied to keep

the approach feasible. This includes the negative

sampling strategy [174,75,91,67]. But also a pre-

filtering step before the actual citation recom-

mendation approach is often performed, which

reduces the set of candidate papers significantly

[75].

Han et al. [67], who propose one of the most re-

cent citation recommendation systems and who

evaluate their approach on data sets with real-

world sizes, report recall@10 values of 0.16/ 0.32/

0.21 and nDCG@10 values of 0.08/0.21/0.13 for

the data sets NIPS, ACL-Anthology, and Cite-

Seer+DBLP data. This shows that the results

depend considerably on the data set and on the

pre-processing steps (e.g., whether PDF-to-text

conversion is performed). Overall, it can be as-

sumed that the novel approaches to citation rec-

ommendation published in the near future will

mainly be based on neural networks, too.

Overall, existing approaches are primarily based on

implicit representations of the cited statements and

concepts (e.g., embeddings of citation contexts [91,

67]), but not on fine-grained explicit representations

of statements or events. One reason for that might

be the missing research on the different citation types

besides the citation function, and the current rela-

tively low performance of fact extraction and event

extraction methods from text.

2. User model: As outlined in Sec. 2, approaches

to citation recommendation can optionally incorpo-
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rate user information, such as the user name, the

venue that the input text should be submitted to,

or keywords which categorize the input text explic-

itly. Overall, we can observe that most approaches

(12 out of 17, i.e., 71%) do not use any user model.

Five approaches are dependent on the author name

of the citing document.10

3. Prefilter: By default, all candidate papers need to

be taken into account for any citation recommenda-

tion. This often results in millions of comparisons

between representation forms and, thus, turns out

to be unfeasible. To escape from that, the proposed

methods often incorporate a pre-filtering step as a

step before the actual recommendation, in which the

set of candidate papers is drastically reduced. For

instance, before applying a neural network-based

approach for a precise citation recommendation, the

top 2048 most relevant papers are retrieved from the

paper collection via BM25 [48]. In 30% (5 out the

17) of the considered papers, the authors mention

such a step (see Table 5). While three authors im-

plement a certain numerical value as threshold [134,

103,48],11 others use flexible thresholds such as the

word probabilities [75,174].12

4. Citation context length: The size of the cita-

tion context varies from approach to approach. Typ-

ically, 1–3 sentences [69,74,153,75,174,91] or a win-

dow of up to 50 words [72,89,71,134,45,103,48,67,

81] is used. Investigations on the citation context

length suggest that there is no one ideal citation

context length [7].

5. Citation placeholders: The citation placehold-

ers, i.e., the places in which a citation should be rec-

ommended, and therefore also the citation context,

are typically already provided a priori for evaluat-

ing the single approaches (exceptions are [71,103]).

The main reason for this fact is presumably that

the past approaches focus on the citation recom-

mendation task itself and see the identification of

“cite-worthy” contexts as a separate task. Deter-

mining the cite-worthiness, which is similar to de-

termining the citation function, is not tackled in the

approaches. However, there have been separate at-

tempts at solving this task [54,148] (and related:

[3]). Also, with respect to performing the evalua-

tion, having a flexible citation context makes it very

tricky to compare the approaches in offline eval-

10 The two global citation recommendation approaches [99,
21] allow the user to disclose more information about her
optionally.
11 Examples in the case of global citation recommendation
are [144,21].
12 Concerning global citation recommendation, we can refer
here to [99,86].

uations with the citation contexts and their cita-

tions from the ground truth. Single attempts such

as [71,103], solve it, however, for instance, by using

only those citation contexts and associated citations

which overlap with the found citation contexts to a

considerable degree.

6. Cited papers’ content needed: The approaches

to citation recommendation differ in the character-

istic of whether they incorporate the content of the

cited documents or not. Incorporating the contents

means that all cited documents need to be avail-

able in the form of full text. This is often a limi-

tation, since any paper published somewhere could

be referenced by authors; the cited documents are,

thus, often not in any ready collection of citing doc-

uments. For instance, in the CiteSeer data set of

[119], only 16% of the cited documents are also cit-

ing documents; this is similar to the arXiv CS data

set [52] and unarXiv data set [136]. Not incorporat-

ing the content, on the other hand, leads to a less

fine-grained recommendation and the vision of even

a single fact-based recommendation is illusive. Con-

sidering the approaches to local citation recommen-

dation, we cannot recognize a clear trend concerning

the aspect of used content: both approaches using

the cited papers’ content and not using it have been

proposed in recent years.

7. Evaluation data set: In general, a variety of data

sets have been used in the publications. Most fre-

quently (in 8 out of 17, i.e., 47% of the cases), ver-

sions of the CiteSeer data set (i.e., CiteSeer, Cite-

SeerX, RefSeer) have been applied, because this data

set has been available since the early years of cita-

tion recommendation research and because it is rela-

tively large. However, even the approaches in recent

years are often evaluated on newly created data sets.

As Sec. 4.1 is dedicated to data sets used for cita-

tion recommendation, we can refer to this section

for more details.

8. Domain: Independent of which data set has been

applied, all data sets cover the computer science or

computational linguistics domain. We can assume

that this is because (1) the papers in those domains

are relatively easy to obtain online, and because

(2) the papers are understandable by the authors

of these approaches, allowing them to judge at first

sight whether the recommendations are suitable.

9. Evaluation metrics: Concerning the usage of eval-

uation metrics and the interpretation of evaluation

scores, the following aspects are especially notewor-

thy:

(a) Varying metrics: The metrics used across the pa-

pers vary considerably; most frequently, recall,
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MAP, nDCG, and MRR are used (10/9/7/7 out

of 17 times). This variety makes it hard to com-

pare the effectiveness of the approaches.

(b) Varying data sets: Since largely systems have

been evaluated on varying data sets and with

varying document filtering criteria, we can hardly

compare the systems’ performance overall. For

instance, the recent approaches [75,48] report

both nDCG@10 scores of 0.26.13

(c) Varying k: Even if the same metrics are used in

different papers, and maybe when even the same

data sets are used, for considering the top k re-

turned recommendations, different k values are

considered, with a great variance from k = 1 up

to k = 200. Especially high values like k = 100

[91] or k = 80 [81] seem to be unrealistic as no

user-friendly system would presumably expect

the user to check so many recommendations.

(d) Missing baselines: It can be observed that the

considered papers do not reference all prior works

(see also Fig. 6) and that previously proposed

approaches are not used sufficiently as baselines

in the evaluations, although the papers propose

solutions for the same research problem. This

applies to papers on local citation recommen-

dation and global citation recommendation. For

instance, [87] does not cite [153], although both

tackle the cross-language citation recommenda-

tion problem. This issue was already observed

for papers on paper recommendation in [15].

(e) Varying citation recommendation tasks: The sys-

tem’s performance strongly depends on the kind

of citation recommendation which is pursued.

Given not only a citation context as input, but

also the metadata of the citing paper, such as

the authors, the venue, etc., then the nDCG@10

score can be 0.62 as in [103] instead of around

0.26 as in [75,48].14

In total, it is very hard to compare the effectiveness of

the approaches (1) if different metrics are used and with

different top k values, (2) if different evaluation data

sets are used, (3) if the approaches do not use existing

systems as baselines, and (4) if the differences in the

task set-up are not outlined. Considering the above-

discussed approaches, we can observe this phenomenon

to a high degree.

13 In case of global citation recommendation, see [100] with
an nDCG@10 score of 0.21.
14 Moreover, global citation recommendation systems using
only the papers’ abstracts perform differently to the ones
based on the papers’ full text. This can be illustrated by the
fact that Liu et al. [100] use an abstract as input and obtain
MAP@all of 0.16, while the same authors in [99] obtain a
MAP@all score of 0.64 when using the full text.

3.4 System Demonstrations

While a relatively large amount of approaches to cita-

tion recommendation have been published, only RefSeer

[76] and CITEWERTs15 [53] have been presented as

systems for demonstration purposes. RefSeer is based

on the model proposed by He et al. [72] and uses Ci-

teULike as the underlying document corpus. It recom-

mends one citation for each sentence in the input text.

CITEWERTs, in contrast, is the first system which

not only recommends citations but also identifies cite-

worthy contexts in the input text beforehand. This makes

the system more user-friendly, since it hides unnec-

essary recommendations, and it reduces the number

of costly recommendation computations. Besides these

systems, to the best of our knowledge, only paper rec-

ommendation systems exist, i.e., systems that do not

use any citation context, but, for instance, only use a

citation graph [77]. TheAdvisor [93], FairScholar [9] are

further examples of paper recommender system demon-

strations. Google Scholar,16 Mendeley17, Docear [16],

and Mr. DLib [17] also provide a functionality for ob-

taining paper recommendations.

4 Data Sets for Citation Recommendation

In this section, we give an overview of data sets which

can be used in the context of citation recommenda-

tion. Section 4.1 presents data sets containing papers’

content, while Section 4.2 outlines data sets containing

purely metadata about papers.

4.1 Corpora Containing Papers’ Content

4.1.1 Overview of Data Sets

There exist several corpora which provide papers’ con-

tent and, hence, can serve as a gold standard for auto-

matic evaluations. Table 6 gives an overview of the data

sets which are considered by us. Note that we only con-

sider data sets here that are not outdated and that are

still available (either online or upon request from the

author). Hence, old data sets, such as the Rexa data

base [144] or the initial CiteSeer database [62], are not

included.18

15 http://citewerts.citation-recommendation.org/
16 http://scholar.google.com/
17 http://mendeley.com/
18 CiteULike (http://www.citeulike.org/), a popular data
set for paper recommendation, is not included in our list, since
the full text of the papers is not available.

http://citewerts.citation-recommendation.org/
http://scholar.google.com/
http://mendeley.com/
http://www.citeulike.org/
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Generally, we can differentiate between two corpora

sets: firstly, the CiteSeer data sets, available in differ-

ent versions, have been explicitly created for citation-

based tasks. They already provide the citation contexts

of each citing paper and can be described as follows:

– CiteSeerX (complete) [32]: Referring to the Cite-

SeerX version of 2014, the number of indexed docu-

ments exceeded 2M. The CiteSeerX system crawls,

indexes, and parses documents that are openly avail-

able on the Web. Therefore, only about half of all

indexed documents are actually scientific publica-

tions, while a large fraction of the documents are

manuscripts. The degree to which the findings re-

sulting from the evaluations based on CiteSeerX

also hold for the actual citing behavior in science

is therefore unknown to some degree.

– CiteSeerX cleaned by Caragea et al. [32]: The

raw CiteSeerX data set contains a lot of noise and

errors as outlined by Roy et al. [135]. Thus, in 2014,

Caragea et al. [32] released a smaller, cleaner version

of it. The revised data set resolves some of the noise

problems and in addition links papers to DBLP.

– RefSeer [75]: RefSeer has been used for evaluat-

ing several citation recommendation approaches [75,

48]. Since it contains the data of CiteSeerX as of

October 2013 without further data quality improve-

ment efforts, RefSeer is on the same quality level as

CiteSeerX.

– CiteSeerX cleaned by Wu et al. [168]: Accord-

ing to Wu et al. [168], the cleaned data set [32] still

has relatively low precision in terms of matching

CiteSeerX papers with papers in DBLP. Hence, Wu

et al. have published another approach for creating

a cleaner data set out of the raw CiteSeerX data,

achieving slightly better results on the matching of

the papers from CiteSeerX and DBLP.

Then, there are collections of scientific publications,

with and without provided metadata, for which citation

contexts are not explicitly provided. However, in those

cases, the citation contexts can be extracted by appro-

priate tools based on the papers’ content, making these

corpora also applicable as ground truth for offline eval-

uations. They are listed alphabetically in the following:

– ACL Anthology Network (ACL-AAN) [129]:

ACL-AAN is a manually curated database of cita-

tions, collaborations, and summaries in the field of

Computational Linguistics. It is based on 18k pa-

pers. The latest release is from 2016. ACL-AAN has

been used as an evaluation data set for many tasks.

– ACL Anthology Reference Corpus (ACL-ARC)

[22]:19 ACL-ARC is a widely used corpus of schol-

19 http://acl-arc.comp.nus.edu.sg/.

arly publications about computational linguistics.

There are different versions of it available. ACL-

ARC is based on the ACL Anthology website and

contains the source PDF files (about 11k for the

February 2007 snapshot), the corresponding content

as plaintext, and metadata of the documents taken

either from the website or from the PDFs.

– arXiv CS [52]: This data set, used by [54,51], was

obtained by utilizing all arXiv.org source data of

the computer science domain and transforming the

LATEX files into plaintext by an own implemented

TEXparser. As far as possible, each reference is linked

to its DBLP entry.

– CORE:20 CORE collects openly available scientific

publications (originating from institutional reposi-

tories, subject repositories, and journal publishers)

as data basis for approaches concerning search, text

mining, and analytics. As of October 2019, the data

set contains 136M open access articles. CORE has

been proposed for citation-based tasks for several

years. However, to the best of our knowledge, it has

not yet been used for evaluating or deploying any of

the published citation recommendation systems.

– Scholarly Paper Recommendation Dataset 2

(Scholarly Data Set):21 This data set contains

about 100k publications of the ACM Digital Library

and has been used for evaluating paper recommen-

dation approaches [147,146].

– unarXiv [136]: This data set is an extension of the

arXiv CS data set. It consists of over one million

full text documents (about 269 million sentences)

and links to 2.7 million unique papers via 29.2 mil-

lion citation contexts (having 15.9 million unique

references). All papers and citations are linked to

the Microsoft Academic Graph.

4.1.2 Comparison of Evaluation Data Sets

Table 6 shows the mentioned data sets categorized by

different dimensions. We can outline the following high-

lights with respect to these dimensions:

Size of data set The considered data sets differ con-

siderably in their sizes: they range from small (below

100k documents; see ACL-ARC and ACL-AAN) to very

large (over 1M documents; see CiteSeerX complete).

Note thereby that the cleanliness of the provided pa-

pers’ contents does not necessarily depend on the over-

all size of the data set: for instance, ACL-AAN and

ACL-ARC are quite noisy, as they contain rather old

20 http://core.ac.uk/.
21 http://www.comp.nus.edu.sg/~sugiyama/

SchPaperRecData.html.

http://acl-arc.comp.nus.edu.sg/
http://core.ac.uk/
http://www.comp.nus.edu.sg/~sugiyama/SchPaperRecData.html
http://www.comp.nus.edu.sg/~sugiyama/SchPaperRecData.html


Citation Recommendation: Approaches and Datasets 19

T
a
b
le

6
O

v
er

v
ie

w
o
f

d
a
ta

se
ts

a
p

p
li
ca

b
le

to
ci

ta
ti

o
n

re
co

m
m

en
d

a
ti

o
n

.

S
iz

e
o
f

d
a
ta

se
t

C
it

a
ti

o
n

co
n
te

x
t

a
v
a
il
a
b

le
,

si
ze

M
et

a
d

a
ta

o
f

ci
ti

n
g

p
a
p

er
(s

tr
u

ct
u

re
d

)

M
et

a
d

a
ta

o
f

ci
te

d
p

a
p

er
(s

tr
u

ct
u

re
d

)

F
u

ll
te

x
t

o
f

a
ll

ci
ti

n
g

p
a
p

er
s

F
u

ll
te

x
t

o
f

a
ll

ci
te

d
p

a
p

er
s

A
b

st
ra

ct
o
f

ci
ti

n
g

p
a
p

er

A
b

st
ra

ct
o
f

ci
te

d
p

a
p

er

F
u

ll
ci

ta
ti

o
n

g
ra

p
h

C
le

a
n

-
li
n

es
s

L
in

k
s

U
sa

g
e

C
it

eS
ee

rX
co

m
p

le
te

v
er

y
la

rg
e

y
es

,
4
0
0

ch
a
rs

y
es

(n
o
is

y
)

y
es

(n
o
is

y
)

y
es

n
o

y
es

n
o
t

a
ll

n
o

(b
u

t
la

rg
e)

n
o

n
o

[1
1
9
][
1
5
1
]

[7
2
][
8
9
][
7
1
]

[7
4
][
1
3
4
][
7
5
]

C
it

eS
ee

rX
cl

ea
n

ed
b
y

C
a
ra

g
ea

et
a
l.

la
rg

e
y
es

,
4
0
0

ch
a
rs

y
es

(n
o
is

y
)

y
es

(n
o
is

y
)

n
o

n
o

y
es

n
o
t

a
ll

n
o

(b
u

t
la

rg
e)

n
o

D
B

L
P

R
ef

S
ee

r
la

rg
e

y
es

,
4
0
0

ch
a
rs

y
es

(n
o
is

y
)

y
es

(n
o
is

y
)

n
o

n
o

y
es

n
o
t

a
ll

n
o

n
o

n
o

[4
8
]

C
it

eS
ee

rX
cl

ea
n

ed
b
y

W
a
n

g
et

a
l.

la
rg

e
y
es

,
4
0
0

ch
a
rs

y
es

(n
o
is

y
)

y
es

(n
o
is

y
)

n
o

n
o

y
es

n
o
t

a
ll

n
o

(b
u

t
la

rg
e)

n
o

D
B

L
P

A
C

L
-A

A
N

sm
a
ll

n
o

(e
x
-

tr
a
ct

a
b

le
)

y
es

n
o

(e
x
-

tr
a
ct

a
b

le
)

y
es

(n
o
is

y
)

n
o

(e
x
tr

a
ct

a
b

le
)

n
o
t

a
ll

n
o

n
o

n
o

[4
5
][
6
7
]

[1
7
0
][
8
1
]

A
C

L
-A

R
C

sm
a
ll

n
o

(e
x
-

tr
a
ct

a
b

le
)

y
es

n
o

(e
x
-

tr
a
ct

a
b

le
)

y
es

(n
o
is

y
)

n
o

(e
x
tr

a
ct

a
b

le
)

n
o
t

a
ll

n
o

n
o

n
o

[2
0
]

a
rX

iv
C

S
m

ed
iu

m
y
es

,
1

se
n
te

n
ce

y
es

y
es

y
es

n
o

(e
x
tr

a
ct

a
b

le
)

n
o
t

a
ll

n
o

y
es

D
B

L
P

C
O

R
E

v
er

y
la

rg
e

n
o

(p
a
rt

.
ex

tr
a
ct

a
b

le
)

y
es

n
o

p
a
rt

ia
ll
y

n
o

y
es

n
o
t

a
ll

n
o

(b
u

t
la

rg
e)

y
es

n
o

S
ch

o
la

rl
y

D
a
ta

se
t

2
m

ed
iu

m
n

o
(e

x
-

tr
a
ct

a
b

le
)

n
o

(e
x
-

tr
a
ct

a
b

le
)

n
o

(e
x
-

tr
a
ct

a
b

le
)

y
es

n
o

(e
x
tr

a
ct

a
b

le
)

n
o
t

a
ll

n
o

y
es

D
B

L
P

u
n

a
rX

iv
la

rg
e

y
es

,
3

se
n
te

n
ce

s
y
es

y
es

y
es

n
o

(e
x
tr

a
ct

a
b

le
)

n
o
t

a
ll

n
o

y
es

M
A

G

T
a
b
le

7
O

v
er

v
ie

w
o
f

p
a
p

er
s’

m
et

a
d

a
ta

d
a
ta

se
ts

a
p

p
li
ca

b
le

to
ci

ta
ti

o
n

re
co

m
m

en
d

a
ti

o
n

.

S
iz

e
o
f

d
a
ta

se
t

A
b

st
ra

ct
o
f

ci
ti

n
g

p
a
p

er
A

b
st

ra
ct

o
f

ci
te

d
p

a
p

er
F

u
ll

ci
ta

ti
o
n

g
ra

p
h

C
le

a
n

li
n

es
s

L
in

k
s

A
M

in
er

D
B

L
P

v
1
0

la
rg

e
p

a
rt

ia
ll
y

p
a
rt

ia
ll
y

y
es

y
es

D
B

L
P

A
M

in
er

A
C

M
v
9

la
rg

e
y
es

y
es

y
es

y
es

D
B

L
P

(b
u

t
n

o
U

R
Is

)

M
ic

ro
so

ft
A

ca
d

em
ic

G
ra

p
h

v
er

y
la

rg
e

n
o

n
o

y
es

y
es

n
o

O
p

en
A

ca
d

em
ic

G
ra

p
h

v
er

y
la

rg
e

y
es

y
es

y
es

(o
p

en
a
cc

es
s

p
a
p

er
s)

y
es

D
B

L
P

(b
u

t
n

o
U

R
Is

)

P
u

b
M

ed
la

rg
e

n
o

p
a
rt

ia
ll
y

y
es

y
es

n
o



20 Michael Färber, Adam Jatowt

publications, which are hard to parse. However, clean

metadata of the cited papers is available for those data

sets.

Availability of citation context CiteSeerX, arXiv CS,

and the unarXiv data set provide explicitly extracted

citation contexts of the citations in the documents. In

case of the different versions of CiteSeerX, a fixed win-

dow of 400 characters has been chosen around the ci-

tation markers. In the case of arXiv CS and unarXiv,

the content is provided sentence-wise, so that all sen-

tences annotated with citation identifiers can be used

as citation context. The corpora which contain the pub-

lications contents in their original form – namely, ACL-

AAN, ACL-ARC, CORE, and Scholarly – do not pro-

vide citation contexts. However, these contexts could

be extracted without much effort by using appropriate

tools from the source PDF files.

Structured metadata of citing papers For all the pre-

sented corpora, structured metadata of all the citing

papers is provided. An exception is Scholarly, which

only consists of PDF files. Hence, the metadata needs

to be extracted by oneself with the corresponding tools.

Note that the metadata is clean only for those corpora

for which the information has been entered manually at

some point. For CiteSeerX, all information, including

the metadata of citing papers, has been extracted from

the publications (mainly PDFs). Hence, this framework

is independent of external data. However, as a tradeoff,

the extracted metadata is to some extent noisy and in-

accurate (missing information or wrongly split strings

etc.) [135].

Structured metadata of cited papers Only the CiteSeer

data sets as well as arXiv CS and unarXiv provide this

information per se. In the case of CORE, it is planned

that publications will be linked to the Microsoft Aca-

demic Graph. Consequently, structured metadata of cited

papers will be retrievable from this data set.22 For the

other corpora containing publications’ content, the meta-

data of the cited papers can be obtained by extracting

the information from the publications’ reference sec-

tions via the appropriate tools. However, note that it

does not only require the parsing via an appropriate

information extraction tool, but also the reconciliation

of the data (i.e., building a global database of publica-

tions’ metadata). The task of how to find out if two ref-

erenced papers are actually the same and, hence, should

have the same identifier is non-trivial and is known as

citation matching.

22 As of November 4, 2019, the webpage mentions links to
the Microsoft Academic Graph. However, no corresponding
information can be found in the data set.

Paper content of citing papers Some approaches, such

as sequence-to-sequence approaches, require the com-

plete contents of all citing papers. In the complete Cite-

SeerX data set, all citing papers’ contents are still avail-

able. Also the paper collections Scholarly, arXiv CS,

unarXiv, ACL-ARC, and ACL-AAN (and CORE to

some degree) contain the papers’ full texts. However,

in case of Scholarly and ACL-AAN, the original data

sets do not contain the contents as plaintext, so that

one first needs to run appropriate transformation ap-

proaches.

Paper content of cited papers All considered data sets

do not provide the full texts of all cited papers. This is

not surprising, as papers typically cite papers without

any restrictions and, thus, from various publishers.

Abstract of citing papers Since the abstract of papers

belongs to the metadata, it is quite easily obtainable

for both citing papers and cited papers. Furthermore,

it already summarizes the main points of each paper

(although typically not sufficiently for a detailed and

precise recommendation) and can be used for obtain-

ing a better representation of the paper, and, hence,

for improving the recommendation of papers based on

citation contexts overall. Regarding the citing papers,

all data sets either provide the abstract already in an

explicitly given form (see the CiteSeerX data set and

partially CORE) or contain the original publications (as

PDF or similar formats), so that the abstract can be ex-

tracted from them (see Scholarly, arXiv CS, unarXiv,

ACL-ARC, ACL-AAN).

Abstract of cited papers Having as much information as

possible about what the cited papers are dealing with

is crucial for a good citation recommendation. In this

context, the abstracts of cited papers are very useful

and are used by several approaches [72,71,103,86,107,

45,174,21,87]. However, none of the data sets contain

abstracts for all cited papers.

Full citation graph In a full citation graph (also called

citation network), not only the citations of the citing

papers are represented, but the citations of any paper of

a given document collection. Such a graph can be used

for obtaining a good representation of the papers (see

paper embeddings [48,63]) and to compute similarities

among papers. None of the considered corpora provides

such an extended citation graph.23 As an alternative,

one can think of linking papers from one corpus with

papers of a metadata corpus (see Section 4.2).

23 Note, however, that data sets such as unarXiv and CORE
link to the Microsoft Academic Graph providing citation in-
formation.
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Cleanliness The situation is mixed in this regard: the

metadata of the papers is of good quality, especially if

it originates from corresponding, dedicated databases

instead of being extracted solely from the publications

themselves (see ACL-AAN, ACL-ARC, arXiv CS, and

unarXiv vs. the CiteSeerX data sets). The papers’ con-

tent is typically provided via information extraction

methods, meaning that the quality is not that high, par-

ticularly if the papers were hard to parse and process,

e.g., due to being very old (see the papers of ACL-ARC

and ACL-AAN vs. Scholarly, which contains newer pa-

pers) or due to special formating in the publications,

such as formulas in the text (see CiteSeerX data sets

vs. the arxiv CS and unarXiv data sets, where formulas

were detected and removed).

Links to bibliographic data sets Having publications linked

to external bibliographic data sets such as DBLP allows

the use of interlinked information for paper representa-

tions and for search. Corpora of scientific papers have

often been created in the area of computer science, since

there are many publications available online. As a con-

sequence, the most widely used bibliographic database

for computer science, DBLP, has been used as a refer-

ence of interlinking. More precisely, the cleaned versions

of CiteSeerX and the arXiv CS data set provide links

to DBLP. unarXiv provides links to the Microsoft Aca-

demic Graph, as it covers not only computer science

papers, but also many other disciplines.

4.2 Corpora Containing Papers’ Metadata

Besides corpora including papers’ content, data sets ex-

ist that contain metadata about publications; typical

metadata include the citation relations between papers

and the titles, venues, publication years, and abstracts

of the publications. Although no content is usually pro-

vided, the metadata can be regarded as an explicit,

structured representation of the papers and, hence, can

be used as a valuable representation of the papers, e.g.,

for learning embedding vectors based of them (see, e.g.,

[48,59]). Due to their extensive sizes, the following data

sets are in our view particularly suitable for citation

recommendation:24

24 The data set Mendeley DataTEL is not listed, as it
has not been available to us after several requests. Further
data sets, such as CORA (https://relational.fit.cvut.
cz/dataset/CORA), have not been shortlisted due to their
small size. We have also not listed bibliographic databases
like DBLP here, as they contain neither the papers’ con-
tents nor information about the citations between papers.
Also Springer’s SciGraph does not contain any citation infor-
mation yet. Bibliographic databases, such as Scopus and Web

– AMiner DBLPv1025 [152]: This data set contains

over 3M papers and 25.2M citation relationships,

making it a large citation network data set. Since

DBLP was used as data source, the data is very

clean.

– AMiner ACMv926 [152]: This data set has the

same structure as AMiner DBLPv10, but was con-

structed from 2.4M ACM publications, with 9.7M

citations.

– Microsoft Academic Graph:27 This data set can

be considered as an actual knowledge graph about

publications and associated entities such as authors,

institutions, journals, and fields of study. Direct ac-

cess to the MAG is only provided via an API. How-

ever, dump versions have been created.28 Prior ver-

sions of the MAG are known as the Microsoft Aca-

demic Search data set, based on a the project Mi-

crosoft Academic Search which retired in 2012.

– Open Academic Graph:29 This data set is des-

ignated to be an intersection of the Microsoft Aca-

demic Graph and the AMiner data. In many cases,

the DBLP entries for computer science publications

ought to be retrievable.

– PubMed:30 PubMed is a database of bibliographic

information with a focus on life science literature.

As of October 2019, it contains 29M citations and

abstracts. It also provides links to the full-text ar-

ticles and third-party websites if available (but no

content).

Table 7 shows the mentioned data sets categorized

by various dimensions. The same dimensions are used

as for comparing the corpora in Section 4.1, except the

ones which are homogeneous among the metadata data

sets (e.g. availability of citation context, paper content

of citing papers). Due to page limitations, we omit a

textual comparison of the mentioned metadata data

sets.

5 Evaluation Methods and Challenges

In this section, we first discuss the different ways of eval-

uating citation recommendation approaches. Secondly,

of Science, are dedicated information retrieval platforms, but
do not officially support bulk downloads.
25 https://aminer.org/citation.
26 https://aminer.org/citation.
27 https://www.microsoft.com/en-us/research/project/

microsoft-academic-graph/.
28 https://kddcup2016.azurewebsites.net/ and http://

ma-graph.org/.
29 https://www.openacademic.ai/oag/.
30 https://www.nlm.nih.gov/databases/download/

pubmed_medline.html.

https://relational.fit.cvut.cz/dataset/CORA
https://relational.fit.cvut.cz/dataset/CORA
https://aminer.org/citation
https://aminer.org/citation
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://kddcup2016.azurewebsites.net/
http://ma-graph.org/
http://ma-graph.org/
https://www.openacademic.ai/oag/
https://www.nlm.nih.gov/databases/download/pubmed_medline.html.
https://www.nlm.nih.gov/databases/download/pubmed_medline.html.
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we point out important challenges related to evaluat-

ing citation recommendation approaches. Afterwards,

we provide the reader with guidelines concerning what

aspects to consider for evaluating future recommender

systems.

5.1 Evaluation Methods for Citation Recommendation

Generally, we can distinguish between offline evalua-

tions, online evaluations, and user studies. In offline

evaluations, no users are involved and the evaluation is

performed automatically. Online evaluations measure

the acceptance rates of recommendations in deployed

recommender systems. User studies are used for mea-

suring the user satisfaction through explicit user rat-

ings.

For offline evaluations, the following evaluation meth-

ods have been applied so far for citation recommenda-

tion:

1. Strict “citation re-prediction:” This evaluation

method has been used by almost all approaches to

local citation recommendation (15 out of 17; see [72,

89,69,74,134,101,45,153,75,174,48,91,67,170,81]).

The evaluation is performed as follows: an approach

is evaluated by assessing which of the citations that

have been recommended by the system are also in

the original publications. We can therefore call this

method “re-prediction.” This evaluation method scales

very well, but ignores several evaluation challenges,

such as the relevance of alternative citations, and

the cite-worthiness of contexts (see Section 5.2). Hence,

the evaluation metrics used for strict citation re-

prediction, such as normalized discounted cumula-

tive gain (nDCG), mean average precision (MAP)

and mean reciprocal rank (MRR), might reflect the

reality in the sense of the citing behavior observed

in the past, but not the desired citing behavior.

2. “Relaxed citation re-prediction:” In order to

allow papers to be recommended which are not writ-

ten as citations by the authors of the papers, but

which are still relevant, and on the other hand, to

keep the evaluation still automatic and scalable, some-

times a relaxation of the strict re-prediction method

is applied. In the set of considered approaches, the

following methods have been applied by both He et

al. [71] and Livne et al. [103]:

(a) The relative co-cited probability metric is designed

as a modified accuracy metric and based on the

assumption that papers which are frequently co-

cited are relevant to each other. Hence, if not the

actual cited paper, but a co-cited paper31 is rec-

ommended, this paper is also considered as a hit

to some degree. The relative co-cited probabil-

ity is the ratio to which recommended papers are

either directly cited or are co-citations of actual

citations. In the latter case, the co-cited paper

is only scored gradually.

(b) The regular nDCG score is used for measuring

the correct ranking of items. Modifying this score

is based on the idea that if the actual paper is not

standing on the intended position, but there is

another paper there, which is also relevant (here,

again determined by the co-citations), then this

should also be judged as correct to some degree.

More specifically, the authors use the average

relative co-cited probability of r with all origi-

nal citations of d to obtain a citation relevance

score of r to d. Then the documents in D are

sorted with respect to this relevance score and

each document is assigned a score on a 5 point

scale regarding its relevance. Finally, the aver-

age nDCG score over all documents is calculated

based on these scores.

A more comprehensive, but not very scalable way to

evaluate approaches is to rely on online evaluations [18].

None of the considered approaches has been evaluated

in this way so far. Also no user studies for citation

recommendation systems are known to us.32

5.2 Challenges of Evaluating Citation

Recommendation Approaches

In the previous subsection we learned that it is hard

to apply traditional evaluation metrics for offline eval-

uations of citation recommendation systems. We now

point out further challenges when it comes to determin-

ing the performance of citation recommendation sys-

tems. In Section 5.3, we then propose steps for ap-

proaching some of these challenges.

5.2.1 Fitness of Citations

Training and evaluating a citation recommendation sys-

tem based on an existing paper collection used as ground

truth is tricky, since the citing behavior encoded in the

citations of these considered papers is taken as ground

truth. This becomes a problem when the original citing

behavior is not favorable and adaptations are desired.

31 B is a co-cited paper of A, if both A and B are cited by
a third paper C.
32 For paper recommendation, a few manual evaluations ex-
ist [15]. However, paper recommendation is out of our scope.
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In the past, several analyses of scientific citing behav-

ior have been published [150]. We can reuse these for

characterizing the different aspects of citing biases in

the context of evaluating citation recommendation. We

thereby group citing biases along the attributes of the

citable publications:

1. Content Understanding: Authors of citing pa-

pers may differ in their expertise, knowledge level,

and working style when selecting citations (cf. pro-

fessor vs. masters student). The suitability of the

content of citable papers is therefore often judged

differently.

Furthermore, authors of citing papers might per-

form literature investigations and reviews in a rather

sloppy way [79] and read, for instance, mainly ti-

tles and abstracts of documents only. However, ti-

tles and abstracts may deceive users about the true

claims and contributions of papers. Moreover, the

selection of citations can be biased by the style of

the titles and abstracts (see, e.g., [27,145]). Also the

writing style of the fulltext of the citable papers has

some influence on citing, as it reflects the perceived

quality of the paper [102].

2. Authors: It is quite common to cite publications

written by oneself, called self-citations, [5,78] or writ-

ten by colleagues, advisors, and friends [161], with

an element of preferential bias. Although analyses

have shown that this is not per se harmful [150], a

citation recommender system ought to be designed

independent of any bias. Furthermore, the user of

a citation recommendation system might be inter-

ested particularly in works she does not yet know.

There are also cases in which the authors of the cit-

ing and cited document do not know each other,

but in which the author of the citing document still

favors specific persons as authors of the cited docu-

ments. Most notably, sometimes citation cartels ex-

ist in the scientific communities, which first of all

cite papers within sub-communities [57]. Further-

more, it has been observed that even the country a

person comes from, the race, and the gender play a

role in the selection of citations [149]. A bias towards

citing authors who act as the referee or reviewer of

the citing document in a peer-review process is also

plausible [162].

3. Venue and Paper Type: It is obvious that the

venue is an influential factor in selecting appropriate

citations for a given text. Highly rated conferences

and journals might get higher levels of attention and

are privileged compared to lower rated conferences,

workshops, and similar publication formats [31,163].

A bias can go so far that a relatively weak publica-

tion in a prestigious journal receives a high number

of citations only due to the centrality of the journal

[31]. Papers in interdisciplinary journals are more

likely to be cited [10]. Last but not least, it should

be noted that, in the frame of the widely performed

peer-reviewing process, especially papers that were

published in the same venue as the citing paper are

more often selected as citations [166].

Many venues have introduced a page limit for sub-

mitted papers. As a consequence, authors often choose

to cut several citations which would be relevant and

important for understanding the content.

4. Timeliness: The temporal dimension concerning

citing behavior is, to the best of our knowledge, rel-

atively unexplored in the context of citation recom-

mendation. On the one hand, due to the acceler-

ation in the publishing rate of scientific contribu-

tions, authors of citing papers might target citing

especially recent papers. On the other hand, older

papers have more citations and are easier to find.

Note also that the reasons for citing specific publi-

cations can change over time [34].

5. Accessibility and Visibility: During the citing

process, researchers are limited by their capabilities

for finding appropriate publications for citing. In

particular, they typically cite only papers to which

they have fulltext access. However, a considerable

amount of researchers have limitations in this re-

gard, such as having no license for accessing papers

of specific publishers (e.g., ACM or Springer) and

paper collections. Consequently, the set of citable

papers is narrowed down considerably. Hence, either

not all concepts and claims in the citing paper can

be backed up by citations or they cannot be backed

up by optimal citations.

Papers are also embedded in the social interactions

and dissemination processes of researchers. Most no-

tably, the claim that prominent publications get cited

more is comprehensible and well-studied, even though

more relevant alternative publications might exist

for citation [164]. Prominent papers are papers which

already have a high number of citations, or papers

written by authors who are well known in the field

and who also have a high aggregated citation count.

We can refer in this context to the studies on the so-

called Matthew effect [14] and on the Google Scholar

effect [137]. Particularly prominent papers are called

landmark papers and citation classics [140]. They

are characterized by the fact that they are often

added as citations in a ritualized way and self-enforce

their citing.

Last but not least, it cannot be neglected that nowa-

days many publications are disseminated via social

networks and other channels. Research on these as-
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pects in the context of citing behavior has been per-

formed only to a limited extent [96].

6. Discipline: Firstly, researchers naturally work within

scientific communities and disciplines, with the con-

sequence that they are often exclusively familiar with

works published in their discipline or field and that

it is difficult for them to discover papers from other

fields (due to different venues, terminology, etc.).

Hence, citations tend to be limited by the affiliation

to the discipline (or even research field).

Secondly, the citing behavior also changes from dis-

cipline to discipline. Comparing the citing behav-

ior across disciplines, and, hence, comparing also ci-

tation recommendation systems trained and tested

on different disciplines, is challenging. For instance,

disciplines differ in (1) the number of articles pub-

lished, (2) the number of co-authors per paper, (3) the

relevance of the publication type (e.g., journal, con-

ference, book) for publishing, and (4) the age of

cited papers [108]. These aspects have a direct influ-

ence on the relevance function of any citation recom-

mendation model. Investigations and evaluations on

the context of citation recommendation approaches

are missing so far, however. As stated in Section 3,

evaluations on citation recommendation have been

performed mainly on corpora containing only com-

puter science publications.

5.2.2 Cite-Worthiness of Contexts

Citation recommendation systems typically consider pre-

defined citation contexts for their prediction. However,

in reality, typically not only the provided citation con-

texts are cite-worthy, but also further contexts. Among

others, one reason for missing citations is the page re-

striction which authors need to fulfill for submitting

papers to venues.33 In the past, there have been a few

approaches for assessing the cite-worthiness of poten-

tial citation contexts automatically, however, only in

the sense of a binary classification task [54,23,148,53].

Although there are single works on characterizing the

citation context, such as on the citation function, the

citation importance, and the citation polarity (see Sec-

tion 2.4), these aspects are not considered in citation

recommendation approaches so far. In particular the

type of citation, given as the citation function or in the

33 The San Francisco Declaration on Research Assessment
(DORA; http://www.ascb.org/dora/) from 2012 targets the
improvement of ways in which the outputs of scientific re-
search are evaluated, and was signed by over 13,000 re-
searchers and institutions. In this declaration, it is proposed
that authors should not be restricted by page limitations for
references any more, or at least should have reduced restric-
tions. The reality, however, still looks different.

form of another classification, such as whether the cita-

tion backs up a single concept or a claim, seems to be

a notable aspect to be considered.

5.2.3 Scenario Specificity

As outlined in Section 2.2, citation recommendation

systems can be applied in different scenarios, differing

in particular in (1) the user type (see expert vs. non-

expert setting) and (2) in the type and length of in-

put text. Considering these nuances during evaluation

makes a comparison of approaches difficult. However,

it is necessary, as the comparison would be unfair oth-

erwise. For instance, citation recommendation systems

using only text from an abstract perform differently

than ones based on a paper’s full text (see the MAP@all

score of 0.16 [100] vs. 0.64 [99]). In contrast to that, the

difference in the usability of systems for different user

types can be assessed via online evaluations and user

studies.

5.3 Discussion

Based on the given observations, we propose the follow-

ing suggestions for an improved evaluation of citation

recommendation systems:

Concerning offline evaluations In the main, nDCG,

MRR, MAP, and recall have been used as the evalu-

ation metric in existing offline evaluations. We recom-

mend using them for the top k recommendations with

a rather low value for k (e.g., k = 5 or k = 10) as in [74,

103,75,67], since it is in our view realistic to return only

very few recommendations to the user per citation con-

text (and not using e.g., nDCG@50, and nDCG@75 as

in [72] or MAP@100 as in [153]). Tang and Zhang [151]

agree with us that it is hard to specify for each cita-

tion context how many recommended citations should

be returned and notes that for simplicity, the average

number of citations per paper could be set as k (e.g.,

11 in [151]), if the whole input document is considered.

Common evaluation metrics used for citation recom-

mendation reflect the reality only in the sense of the

citing behavior observed in the past, but not alterna-

tively valid citations. So far, only a few citation recom-

mendation systems have been evaluated based on alter-

native offline evaluation metrics (see “relaxed citation

re-prediction” in Section 5.1). For instance, the preci-

sion metric is softened and papers are also assessed as a

hit if they are only related to the cited publications in

the citation graph. We argue that such metrics need to

be taken with care in the light that citation recommen-

dation aims to back up specific claims and concepts.

http://www.ascb.org/dora/
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Concerning online evaluations and user studies
As outlined in Section 5.1, user studies and online eval-

uations are so far missing in the context of citation

recommendation, while offline evaluations predominate.

The situation is therefore similar to the situation in the

field of paper recommendation [15]. Similar to [18], we

recommend performing user studies and online evalu-

ations as necessary steps in the future. This might be

particularly fruitful (1) for determining a reasonable

ratio of citations per document (cf. cite-worthiness of

contexts), and (2) for assessing the relevance of alter-

native citations, which can be even more relevant than

the original citations.34 Differentiating and automati-

cally determining different levels of relevance seems to

be necessary to address this issue, as outlined by [143].

Studies on the importance and grading of citations are

rare (see Section 2.4.3), and, to the best of our knowl-

edge, there are no user assessment studies on assessing

alternative papers in the context of (personalized or

unpersonalized) citation recommendation.

Concerning citing biases In order to minimize the bi-

ases in the citing behavior, the corpora used for train-

ing and testing might need to be changed. For instance,

only those publications might be considered for which a

high degree of fairness can be guaranteed. Single pub-

lications could be classified in this respect and might

receive a confidence value concerning biases [127].

To not introduce a citing bias via recommending

specific papers, citation recommendation systems should

use large paper collections (see Sec. 4) and the informa-

tion which recommendation algorithm and candidate

papers are used, should be made available to the user.

Concerning scenario specificity Similar to paper rec-

ommender systems [15], the evaluation results of cita-

tion recommendation approaches are often not repro-

ducible, since the data sets are not available and/or

many important details of the implementation are omit-

ted in the papers due to constraints such as page limi-

tations [13]. Therefore, we recommend making evalua-

tion data sets, the implementation of the system, and

the calculation of evaluation metrics as transparent as

possible. Also the targeted scenario (see Section 2.2)

and use case characteristics should be clearly visible.

6 Potential Future Work

There are still many variations of the architectures and

of the input and output of citation recommendation sys-

34 The fact that other documents are more relevant as cita-
tions can also be observed for Wikipedia, see [56].

tems which have not been considered yet. More specif-

ically, we can think of the following adaptations to en-

hance and improve citation recommendation:

– Topically diversifying recommended citations [35];

– Recommending papers which state similar, related,

or contrary claims as the ones in the citation con-

texts (i.e., recommending not only papers with iden-

tical claims);

– Inserting a sufficient (optimal) set of citations; this

could be useful in the presence of paper size limita-

tion, which may be imposed, for example, by con-

ferences. A citation recommendation system should

then prioritize important citation contexts that can-

not be left without the insertion of citations, while

perhaps skipping other less important ones in order

to keep the paper size within the limits;

– Given an input text with already present citations,

suggesting newer/better ones to update some obso-

lete/poor citations;

– Combating the cold-start problem for freshly pub-

lished papers which are not yet cited, hence no train-

ing data is available on them;

– Incorporating information on social networks among

researchers and considering knowledge sharing plat-

forms; such data can offer additional (often timely)

hints on the appropriateness of papers to be cited

in particular citation contexts;

– Focusing on specific user groups, which have a given

pre-knowledge in common (see our listed scenarios

in Sec. 2.2);

– Studying the influences of citing behavior on cita-

tion recommendation systems and developing meth-

ods for minimizing citing biases in citation recom-

mendation such as biases arising from researchers

belonging to the same domains, research groups, or

geographical areas (cf. Section 5.2);

– Developing global context-aware citation recommen-

dation approaches, i.e., approaches that recommend

citations in a context-aware way, yet still consider

the entire content of a paper;

– Recommending citations refuting an argument (us-

ing argumentation mining);

– Designing domain-specific citation recommendation

approaches and evaluating generic approaches on

different disciplines (outside computer science).

Besides these concrete future works, we can think of

the following visions in the long term, which embrace a

new process of citing in the future:

1. One can envision that, in the future, citation recom-

mendation approaches could better capture the se-

mantics of the citation context, with the result that

actual fact-based citation recommendation would
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have good chance to become reality. This suggests

the opportunity of obtaining precise citation rec-

ommendations, since both the claims in the citation

context and the claims in the candidate cited doc-

uments are represented explicitly in a semantically-

structured form. In this sense, citation recommen-

dation systems might be capable of not only citing

publications, but also any knowledge (in particular,

facts and events) available on the Web. This vision

becomes particularly feasible in light of the Linked

Open Data (LOD) cloud and is in line with research

on LOD-based recommender systems [120].

2. One can envision that the working style of researchers

would dramatically change in the next few decades

[33,115]. As a result, we might think not only of ci-

tation recommendation as considered in this article,

but one based on the expected or potential charac-

teristics of scientific publishing. For instance, one

can imagine that publications will not be published

in PDF format any more, but in either an annotated

and more structured version of it (with information

about the hypotheses, the methods, the data sets,

the evaluation set-up, and the evaluation results),

or in the form of a flexible publication format (e.g.,

subversioning system), in which authors can subse-

quently change the content, especially the citations,

since over the time citations might become obsolete

or new citations might become relevant.

7 Conclusions and Outlook

In this survey, we gave a profound overview of the re-

search field of citation recommendation. To that end,

we firstly introduced citation recommendation via out-

lining possible scenarios and via a description of the

task. We saw that the approaches to context-aware cita-

tion recommendation can be grouped into hand-crafted

feature-based models, topic models, machine transla-

tion models, and neural network models. The approaches

do not only differ with respect to the underlying method,

but also with respect to the provided input data. More

specifically, the considered set-ups differ in the use of

a user model, the prefiltering of candidate papers, the

length of the citation context, whether citation place-

holders are provided, and whether the content of cited

papers is needed. Concerning the evaluation, the ap-

proaches are evaluated based on very diverse metrics

and different data sets, making it hard to assess the

validity and advance of single approaches. Moreover,

approaches are often compared to existing approaches

to a limited extent.

We also considered the data sets that can be used

for deploying and evaluating citation recommendation.

We distinguished between corpora containing papers’

content and corpora providing papers’ metadata. Here

we learned that several corpora exist, especially in the

field of computer science. However, the data sets differ

considerably in their size and in their quality (e.g., noise

due to information extraction).

Concerning the challenges of evaluating citation rec-

ommendation and the evaluation methods used so far,

we found out that biases in the citing behavior have

largely been ignored, as well as the “worthiness” to cite

at all or in specific circumstances. Assessing citation

recommendations might also depend on the scientific

discipline and on the concrete use case. Approaches

have been evaluated rather unilaterally and not across

disciplines.

Upcoming approaches on citation recommendation

are likely to be based on more advanced techniques of

machine learning, such as variants of recurrent neu-

ral networks. In the long term, one can envision that

citation recommendation approaches can better cap-

ture the semantics of the citation context, with the

result that actual fact-based citation recommendation

becomes reality. Given the likely continuation and pro-

liferation of the “tsunami” of publications and of cita-

tions in the years and decades to come, we can assume

that citation recommendation will become an integral

component of a researcher’s working environment.
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and Roman Kern. {{citation needed}}: Filling in
Wikipedia’s Citation Shaped Holes. In Proceedings of
the First Workshop on Bibliometric-enhanced Informa-
tion Retrieval, BIR’14, pages 45–52, 2014.

81. Chanwoo Jeong, Sion Jang, Hyuna Shin, Eunjeong
Park, and Sungchul Choi. A Context-Aware Citation
Recommendation Model with BERT and Graph Con-
volutional Networks. CoRR, abs/1903.06464, 2019.

82. Haofeng Jia and Erik Saule. An Analysis of Citation
Recommender Systems: Beyond the Obvious. In Pro-
ceedings of the 2017 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and
Mining, ASONAM’17, pages 216–223, 2017.

83. Haofeng Jia and Erik Saule. Local Is Good: A Fast Cita-
tion Recommendation Approach. In Proceedings of the
40th European Conference on IR Research, ECIR’18,
pages 758–764, 2018.

84. Zhuoren Jiang. Citation Recommendation via Time-
series Scholarly Topic Analysis and Publication Prior
Analysis. TCDL Bulletin, 9(2), 2013.

85. Zhuoren Jiang, Xiaozhong Liu, and Liangcai Gao. Dy-
namic Topic/Citation Influence Modeling for Chrono-
logical Citation Recommendation. In Proceedings of
the 5th International Workshop on Web-scale Knowl-
edge Representation Retrieval & Reasoning, Web-
KR@CIKM’14, pages 15–18, 2014.

86. Zhuoren Jiang, Xiaozhong Liu, and Liangcai Gao.
Chronological Citation Recommendation with
Information-Need Shifting. In Proceedings of the
24th Internat. Conference on Information and Knowl-
edge Management, CIKM’15, pages 1291–1300, 2015.

87. Zhuoren Jiang, Yao Lu, and Xiaozhong Liu. Cross-
language citation recommendation via publication con-
tent and citation representation fusion. In Proceedings
of the 18th ACM/IEEE on Joint Conference on Digital
Libraries, JCDL’18, pages 347–348, 2018.

88. Zhuoren Jiang, Yue Yin, Liangcai Gao, Yao Lu, and Xi-
aozhong Liu. Cross-language Citation Recommendation
via Hierarchical Representation Learning on Heteroge-
neous Graph. In Proc. of the 41st International ACM
SIGIR Conference on Research & Development in In-
formation Retrieval, SIGIR’18, pages 635–644, 2018.

89. Saurabh Kataria, Prasenjit Mitra, and Sumit Bhatia.
Utilizing Context in Generative Bayesian Models for
Linked Corpus. In Proceedings of the 24th AAAI Con-
ference on Artificial Intelligence, AAAI’10, 2010.

90. Ralf Klamma, Manh Cuong Pham, and Yiwei Cao. You
Never Walk Alone: Recommending Academic Events
Based on Social Network Analysis. In Proceedings of the



30 Michael Färber, Adam Jatowt

First International Conference on Complex Sciences,
Complex’09, pages 657–670, 2009.

91. Yuta Kobayashi, Masahi Shimbo, and Yuji Matsumoto.
Citation Recommendation Using Distributed Represen-
tation of Discourse Facets in Scientific Articles. In Pro-
ceedings of the 2018 Joint International Conference on
Digital Libraries, JCDL’18, pages 243–251, 2018.
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and Jöran Beel. Evaluation and comparison of open
source bibliographic reference parsers: A business use
case. CoRR, abs/1802.01168, 2018.

157. Dominika Tkaczyk, Andrew Collins, Paraic Sheridan,
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